ProgramMaster Logo
Conference Tools for 2021 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 TMS Annual Meeting & Exhibition
Symposium Advanced High Strength Steels V
Presentation Title Ferrite Recrystallization Investigated by In Situ High Energy X-ray Diffraction Experiments
Author(s) Clelia Couchet, Sébastien Allain, Julien Teixeira, Marc Moreno, Guillaume Geandier, Frédéric Bonnet
On-Site Speaker (Planned) Clelia Couchet
Abstract Scope Competitive recovery and recrystallization of a conventional low carbon ferritic steel have been investigated in situ thanks to High Energy X-Ray Diffraction experiments and original automated spot detection and tracking methods. These experiments has been carried out on P07 beamline in PETRA III at DESY (Hambourg) with a monochromatic beam (100 keV). High flux from synchrotron source and fast high-throughput 2D detector (Perkin-Elmer) collects Debye-Scherrer (DS) diffraction patterns at significant rate (10hz). Four isothermal annealing temperatures (450°C, 500°C, 550°C and 650°C) have been studied. Recovery kinetics has been determined using a modified Williamson-Hall method inspired by Ungar et al. (Appl. Phys. Lett. 69, 3173 (1996)) and compared to the prediction of recovery models. Recrystallization has been followed by tracking isolated diffraction spots on DS rings produced by newly recrystallized grains. This work aims to provide better understanding for recovery and recrystallization processes, both influencing final mechanical properties of steels.
Proceedings Inclusion? Planned:

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Novel Study on Plasticity Mechanisms during Yield Point Elongation in Medium Manganese Steels
A Spatial Spin Average Approach to Model Austenitic Steels Using First Principle Calculations
Carbon Content in Carbide-free Bainite during Isothermal Transformations
Correlation of Rolling Schedules, Mechanical Properties, and SCC Susceptibility of API X70 Steel
Cryogenic Tensile and Microstructural Behaviors of High Manganese Steel Welds
Dislocation Densities during Martensite Transformation in a Low-carbon Steel Determined by In Situ High Energy X-ray Diffraction
Effect of Phase Stability of Retained Austenite during Deformation in Low-alloy Multiphase Steels
Effect of Rolling Conditions on Microstructure and Mechanical Properties of Medium Mn Steel
Effects of Cold Rolling on Austenite Formation in a QLT-Treated High-Ni Martensitic Steel
Effects of V and Mo Additions on the Suppression of HAZ Softening of Friction Stir Welded Si-Mn Martensitic Steel
Ferrite Recrystallization Investigated by In Situ High Energy X-ray Diffraction Experiments
High-resolution Digital Image Correlation Study of Plasticity and Damage at Lamellar Scales in Ferrite -- Pearlite Steel
Methods for Improving the Hydrogen Embrittlement Resistance in Press-hardened Steel
Microstructural and Plastic Deformation Study of a Multi-phase Advanced High Strength Steel
Microstructural Characterization of Fracture in Fe-10 pct Ni Gas Metal Arc Welds
Microstructural Refinement and Homogenization of High Strength Austenitic Steels for Lightweighting Using Equal Channel Angular Pressing
Phase Evolution of Triple Nano-precipitate Strengthened Mn-stabilized Austenitic Steel
Revisit the Slow Strain Rate Test for Hydrogen Embrittlement of Press-hardened Steel
Role of Metal Carbides in the Formation of Austenite in a High-Ni Martensitic Steel
Static Recrystallization during Hot Deformation of HSLA Nb-Bearing Steels
Strain Path Effect on Martensitic Transformation in Medium Mn Steels
Strain Rate Sensitive Martensite Transformation in a Q&P Steel
Twinning-induced Plasticity of Austenitic Lightweight High-entropy Steel
Use of Physical Simulations for Accelerated Welding Procedure Development in Supermartensitic Stainless Steels
Use of Thermo-mechanical Simulation to Assess Liquid Metal Embrittlement (LME) in Zinc Coated Advanced High Strength Steels

Questions about ProgramMaster? Contact programming@programmaster.org