ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments V
Presentation Title Interactions Between Radiation-Induced Defects and Shock in Al 1100
Author(s) Calvin R. Lear, David Robert Jones, Daniel Tito Martinez, Matthew Ryan Chancey, Yongqiang Wang, Nan Li, Saryu Jindal Fensin
On-Site Speaker (Planned) Calvin R. Lear
Abstract Scope Interactions between radiation-induced defects (helium bubbles, dislocation loops, and voids) and dynamic deformation processes are little understood and are concerning for long-term, low-temperature irradiation. Recent work on irradiated copper, for example, has revealed the unexpected collapse of helium bubbles on contact with shockwaves, increasing the production of ejecta and erasing strengthening observed under quasi-static nanomechanical testing. Here, room temperature irradiations with helium and silicon ions were performed on control samples and on targets for shock testing with recovery, to directly observe the effects of defects-on-shock and of shock-on-defects in Al 1100. Combinations of irradiating ion were used for three conditions: “He” with bubbles (2-5 nm, diameter), “Si” with dislocation loops (10-20 nm) and voids (50-200 nm), and “Si-He” with the features of both. These defect microstructures were probed using transmission electron microscopy and nanopillar compression. Comparisons of shock behavior and of defect microstructures and discussed in terms of long-term performance.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advanced Characterization Capabilities of Nuclear Materials via NSUF
Advanced In-Situ Strain Mapping for Zr Oxidation by 4D-SPED
An In-Situ Transmission Electron Microscopy Study on the Synergistic Effects of Heating and Biasing of AlGaN/GaN High Electron Mobility Transistors
Application of Laboratory-Based Photoelectron Spectroscopy with Hard and Soft X-Rays to Nuclear Forensics Characterization of Uranium Dioxide Fuel
Atomic-Scale Hidden Point-Defect Complexes Induce Ultrahigh Irradiation Hardening in BCC Metals
Characterization of Aluminum Under Shock: Defects, Grain Orientation, and Phase Stability
Characterization of Radiation Damage in Nanocrystalline Ni- and Fe-Based Oxide Dispersion-Strengthened Alloys
Deciphering and Visualizing Helium Accumulation and Dynamics in Materials via In-Situ Characterization
Deployment and Testing of a Fiber-Based Instrument for In-Reactor Thermal Property Measurements at MIT Research Reactor
Determination of Molten Salt Thermal Conductivity Using Laser Flash Technique
Dynamics of Radiation Defect Accumulation in Non-Metallic Materials
Effect of Swift Heavy Ion Irradiation on Silicon Carbide
Formation and Recover of Dislocations Under Deformation and/or Irradiation of Elemental Tantalum, a Step Toward Understanding Complex BCC Alloys.
Impact of Amorphous Pockets on Displacement Damage Evolution in Crystalline Silicon
Influence of Defects Length-scale on Nuclear Graphite Properties
Interactions Between Radiation-Induced Defects and Shock in Al 1100
Investigation of Helium Bubble Formation at Tungsten-Dispersoid Interfaces in Dispersion-Strengthened Tungsten Alloys
Localized Crystallization of Zr Following Heavy Ion Irradiation of HfNbTaZr MPEA
Machine Learning and Molecular Dynamics-Coupled X-Ray Absorption Spectroscopy for Disordered Multicomponent Systems
Microstructural and Chemical Evolution Studies of U-10Zr Metallic Fuel and HT9 Cladding from Fast Flux Test Facility
Microstructural Evolution in 316L Stainless Steel Under Lead-Bismuth Eutectic Corrosion
Nanoscale Redistribution of Lithium in Neutron Irradiated LiAlO2
Neutron-Induced Reversible Nanostructuring of GeSe2
Quantitative Phase Characterization of Nuclear Cements and Concretes Using Non-Destructive 3D Automated Mineralogy and Enhanced Deep-Learning Reconstruction via X-ray Microscopy
Real-time Neutron Diffraction to Support Interpretation of DSC Results on Zr-2.5Nb for Reactor Pressure Tubes
Strong Dependence of 2D Material Radiation Tolerance on the Composition of the 2D Material and Its Surrounding Environment
Structural Characterization of Ultra-High Temperature Ceramics in Three Dimensions for Statistical and Physics-Based Modeling
Superimposed Effects of Texture and Grain Shape Anisotropy on Biaxial Creep Behavior of Nb-Modified Zircaloy-4 Cladding
Surface Microstructure Evolution and Associated High Temperature Anti-Oxidation Mechanisms of Copper with Vapor Deposited Graphene
Synthesis and Irradiation of Uranium Carbide and Nitride for TRISO Development
Thermophysical Characterisation of Zirconium-Based Nuclear Materials
Thermophysical Properties of Irradiated Yttrium Hydride Moderator Material
Tungsten-Based WTaVCr Refractory High Entropy Alloys for Fusion Energy Applications
Understanding Irradiation Assisted Hydrogen Embrittlement Using In Situ Coherent X-Ray Imaging
Understanding the Mechanism of Fission Gas Re-Solution and Blistering in UMo Fuel via Atomistic Modelling
Understanding the Surface and Near Surface via Nanomechanical Mapping

Questions about ProgramMaster? Contact programming@programmaster.org