ProgramMaster Logo
Conference Tools for MS&T21: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T21: Materials Science & Technology
Symposium Materials Informatics for Images and Multi-dimensional Datasets
Presentation Title Building a Database of Fatigue Fracture Images to train a CNN
Author(s) Katelyn Jones, Paul Shade, William Musinski, Reji John, Adam Pilchak, Anthony Rollett, Elizabeth Holm
On-Site Speaker (Planned) Katelyn Jones
Abstract Scope Machine learning and computer vision techniques can be used in materials science to improve and facilitate the analysis of microstructural data and images. Additionally, it can work on large amounts of data and diverse images when enough training data is provided. Convolutional neural networks (CNNs) are a key tool in making connections between fracture images, microstructure, and fatigue characteristics such as stress intensity factor, crack length, and load values. This project collects images from a variety of Ti-6Al-4V fracture surfaces to create a database to train a CNN and identify high stress points, crack initiation sites, and predict values such as stress intensity factor. The images used to develop this model, creation of the CNNs, identified fatigue properties, and fracture characteristics will be presented.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Building a Database of Fatigue Fracture Images to train a CNN
Characterization of Additively Manufactured ZrB2-SiC Ultra High Temperature Ceramics via X-ray Microtomography
Graph Neural Networks for an Accurate and Interpretable Prediction of the Properties of Polycrystalline Materials
Machine Learning and Image Processing Techniques for Materials Evaluation
Machine Learning Ferroelectrics: Bayesianity, Parsimony, and Causality
Multivariate Statistical Analysis (MVSA) for Hyperspectral Images
Now On-Demand Only - Computational or Experimental? Interpreting X-ray Absorption and Diffraction Contrast for Massive Non-destructive 3D Grain Mapping of Metals in Laboratory CT
Open-source Hyper-dimensional Materials Analytics Using Hyperspy
Quantitative Comparisons of 2D Microstructures with the Wasserstein Metric
Spatial and Statistical Representation of Strain Localization as a Function of the 3D Microstructure Using Multi-modal and Multi-scale Data Merging
Training Deep-learning Models with 3D Microstructure Images to Predict Location-dependent Mechanical Properties in Additive Manufacturing
Understanding Degradation and Failure Mechanisms by Multiscale and Multiresolution Electron Microscopy

Questions about ProgramMaster? Contact programming@programmaster.org