ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Innovations in Energy Materials: Unveiling Future Possibilities of Computational Modelling and Atomically Controlled Experiments
Presentation Title Resonant Ultrasound Spectroscopy for Rapid Down Selection, Elastic Property Determination, and Model Validation in High-Entropy Materials
Author(s) Christopher Mizzi
On-Site Speaker (Planned) Christopher Mizzi
Abstract Scope The exceptional performance and high tunability of high-entropy materials has led to significant research into the possibility of using such materials for energy applications. However, optimizing high-entropy compositions for tailored applications is challenging due to the vastness of the high-entropy design space. There is a particularly pressing need for rapid, quantitative property assessments to identify promising high-entropy candidates, down-select compositions for further study, and provide experimental inputs to facilitate model development. In this talk, I will describe how resonant ultrasound spectroscopy (RUS) measurements of elastic constants and ultrasonic attenuation are a prime candidate to address this need and how such measurements can serve as a benchmark for materials design, model development, and model validation. Comparisons between theoretical predictions and temperature-dependent RUS measurements on a range of refractory high-entropy alloys will be presented to exemplify this approach.
Proceedings Inclusion? Planned:
Keywords High-Entropy Alloys, Mechanical Properties, Characterization

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Journey from Atoms to Materials: Designing Functional Materials for Energy and Microelectronics
Ab initio calculations of the thermoelectric figure of merit
Beyond the Linear Scaling Relation: Novel Strategies
Body heat harvester based on thermoelectrics for continuous operation of sensors and actuators
Bragg coherent x-ray diffraction imaging of strain in energy materials
Coordination Engineering in Nanomaterials Design for Energy Applications
Design of eco-friendly and high-efficiency thermo-photoelectric conversion materials
Development of kinetic lattice Monte Carlo model to study ionic diffusion at misfit dislocations in oxide heterostructures
Exploring Ultra-Stable Green Rust Compositions for Green Energy Catalysis
From Prediction to Experimental Realization of Ferroelectric Wurtzite AlN-Based Alloys
Local Thermal Conductivity Imaging and Modelling to Guide Microstructure Engineering in Energy Materials
Machine Learned Multiphysics Modeling: Enhancing Uniform Distribution of Low-Energy Lithium-Ion Transport Channels in Solid Electrolyte Interphase of Electrodes
Magnetic Metasurfaces for sustainable Information and Communication technologies
Nanomaterial and nanostructure physics for thermoelectric performance enhancement
Nanoscale design of 3D anode and high effective catalysis for high performance Aluminum-air batteries
Optimization of CO2 Reduction Reaction Using Nanoporous Copper Catalysts through Machine Learning-Driven Process Parameter Modeling
Quantum-Assisted Machine Learning Analysis of Silicon-Based Anodes for Lithium Batteries: Thermodynamics, Structural Insights, and Lithium Diffusion. Identifying Challenges and Exploring Novel Candidates
Reaching new frontiers to for superconductors using pulsed high magnetic fields
Resonant Ultrasound Spectroscopy for Rapid Down Selection, Elastic Property Determination, and Model Validation in High-Entropy Materials
Specialized Machine Learning Interatomic Potential to assess Self-Healing at a W Grain Boundary
Starrydata2: an Open Platform for Materials Data Curated from Literature
Structure Low Dimensionality and Lone-Pair Stereochemical Activity: the Key to Low Thermal Conductivity in sulfides
The Exploration of FeNiMoW-based alloys for High Value Magnetic Materials
The Magic and Myths of Machine Learning in Materials Science
Two-dimensional oxides: structural modulation and energy storage applications
Unraveling the Effects of Dislocations on Ferroelectric Behavior by Molecular Dynamics Simulations
Ab Initio Models for the Prediction of Corrosion-Passivation Behavior in Aqueous Media

Questions about ProgramMaster? Contact programming@programmaster.org