ProgramMaster Logo
Conference Tools for TMS Specialty Congress 2025
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting TMS Specialty Congress 2025
Symposium Joint Sessions of AIM, ICME, & 3DMS
Presentation Title Efficient, Coupled Process-Structure-Property Simulations of Additive Manufacturing Using the “Materialize” Framework
Author(s) Brodan Richter, Joshua Pribe, George Weber, Edward Glaesssgen
On-Site Speaker (Planned) Brodan Richter
Abstract Scope Process-structure-property (PSP) simulations have the potential to guide and supplement experiments through physics-based insight into the additive manufacturing (AM) process. However, implementing PSP simulations often requires difficult, bespoke coupling of various software packages that use a range of programming languages. This presentation introduces “Materialize”, a Python-based framework recently developed by NASA Langley Research Center, to implement coupled physics-based PSP models and support integrated computational materials engineering workflows. Materialize was conceived to efficiently link computational materials models across length scales and PSP space, with a particular emphasis given towards supporting exploratory studies in AM applications. The use of Materialize to perform GPU-accelerated process-structure simulations of transient temperature fields and microstructure evolution during AM is presented. The linking of process-structure simulations to structure-property simulations is then discussed, and the full PSP pipeline will be highlighted. The results demonstrate capabilities of Materialize that are intended to streamline physics-based PSP simulations of AM.
Proceedings Inclusion? Definite: Post-meeting proceedings

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Architecture for Developing an Image Recognition Model Workflow for Workplace Safety Application
Automated 3D Microstructural Characterization of a Dual-Phase Steel Using the RASSI Platform
Building a Self-Driving Lab From Scratch
Customizing the NIMS RDE System for Optimal Data Management
Digital Twins for Accelerated Materials Innovation
Efficient, Coupled Process-Structure-Property Simulations of Additive Manufacturing Using the “Materialize” Framework
Enhancing AI Readiness Through Data Stewardship, Modular Ontologies, and FAIR Data Workflows
FactoryNet: A Labeled Image Dataset for the Manufacturing Environment
FIB-SEM Serial Sectioning Tomography: Towards 24-Hour Time-to-Results
Generalized Graph Foundation Models as Versatile Data-Driven Digital Twins for Complex Technological Systems
Harnessing Deep Learning Conditional Diffusion Models for Microscopy Modality Transfer of Light Optical Microscopy to Electron Backscattering Microscopy Diffraction Misorientations
Harnessing Multi-Modal Metrology Data for Predictive Modeling in Laser Powder Directed Energy Deposition
Hydro Quebec Efforts Toward ICME: Characterizing the Microscale Tensile Behavior of Hydraulic Turbine Steels With Micro-Tensile and Nano-Indentation Tests
Influence of 3D Crack Networks for High Toughness Responses in Tantalum Carbides
Innovations in 3D EBSD for Advanced Materials Characterization
Laser Assisted Machining of Niobium C103 and Optimization of Machining Parameters Using AI/ML Techniques
Manufacturing and Control of Fiber Reinforced Polymer Composites Through FMEA-Based Digital Twin
Materials Microstructure Design Integrated With Image-Based Simulation
Modelling Physical-to-Virtual Feedback Flow of Digital Twins for Induction Furnace
Modular and Interoperable Materials Data Science Ontology (MDS-Onto) for Knowledge Graphs and Semantic Reasoning
NFDI MatWerk Ontology: A Framework for FAIR Data Management in the Materials Science and Engineering
NIMS's Data-Driven Materials Research Platform: Enhancing MLOps With Literature-Based Data Integration
Ontology-Based Materials Data Management for High Temperature Alloy Oxidation Data
Pinax: A Machine Learning Platform for Data-Driven Materials Development
Practical Data Management in Computational Materials for Qualification and Certification
Smart Sustainable Packaging for Local Fruits—TRACE Your Food, KNOW Your Food, TAKE CARE of Trash
The Materials Science and Engineering Knowledge Graph: Establishing a Centralized Metadata Index for Enhanced Data Integration
Toward Sentient Manufacturing
Towards Structured Data Spaces: Prototypical Application of Semantic Technologies as a Driver for Innovation in Materials Science
Transforming Materials Science With Concepts for a Semantically Accessible Data Space
Uncertainty Quantification, Error Propagation, and Sensitivity Analysis for Synchrotron X-Ray Residual Stress Measurements
Using Novel EBSD Methods to Analyze Plastic Strain in Structural Alloys
X-Ray Diffraction Analysis Using TensorFlow and FAIR Data Pipelines
"Advanced Calibration of GTN Damage Model for Aluminum Alloy AA6111 Using Digital Image Correlation and Bayesian Inference"

Questions about ProgramMaster? Contact programming@programmaster.org