ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Composition–Processing–Microstructure-Property Relationships of Titanium Alloys
Presentation Title ATI Titan 27® : Exploiting c+a Slip to Improve Performance for Aerospace
Author(s) Bhuvi Nirudhoddi, Ming Li, David Shaner, John Foltz, Andrew Temple, Erik Rogoff
On-Site Speaker (Planned) Bhuvi Nirudhoddi
Abstract Scope ATI Titan 27® is a lightweight α/β titanium alloy capable of a 15% increase in strength/weight ratio compared to the industry workhorse Ti 6Al-4V. Though this Ti-Al-Sn-V-Co alloy is similar in microstructure to legacy α/β titanium alloys, it has a higher propensity for activating non-close packed c+a slip systems. This novel behavior enables high ductility in the alloy without sacrificing static properties and dynamic properties such as toughness and fatigue. The alloy’s wide hot working range enables tunable properties through thermomechanical processing and heat treatment. Titan 27® has been successfully produced in multiple product forms such as plate, sheet, bar, powder, and billet at production scale, and is an ideal replacement for Ti 6Al-4V in a variety of ballistic, structural, and dwell-sensitive applications.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Study on High-Temperature Deformation Behavior, Mechanism and Microstructure Evolution of Ti-900 Alloy for Gas Turbine Blade Application
An AM Defect Model for Fast-Acting Probabilistic Prediction of Defects in Laser Powder Bed Fusion and Its Application to Ti-6Al-4V
ATI High Temperature Titanium Alloy Development for Aerospace Applications
ATI Titan 27® : Exploiting c+a Slip to Improve Performance for Aerospace
Cross-Slips in a Near-α Titanium Alloy Made by Additive Manufacturing
Deformation and Fracture at Basal Twist Grain Boundaries In Ti-6Al-4V
G-1: Effects of Temperature on the Deformation Behavior and Microstructural Evolution during the Hot Compression Test of Ti-6Al-2V-1Fe-1Cr Alloy
G-2: Experimental Investigations on Thermomechanical Fatigue Behavior in Near Alpha Titanium Alloy
G-3: Heterogeneous Nano-Mechanical Response of Bimodal Ti-6Al-4V Alloy
G-4: Study of Microstructure of Titanium Alloys and Its Relation to Mechanical Properties of Alloys for Aerospace Industry
Influence of Zr and O on the Evolution of Microstructural Features in High γ-Phase Ti-Al-Zr Alloys
Investigating Cold Dwell Fatigue Failure in Dual-Phase Ti Alloys: The Perspective of Hard-Soft Grain Interactions
Metastable and Stress-Induced Transformations in Additively Processed Ti-10V-2Fe-3Al
Microstructure, Mechanical, and Electrochemical Properties of Additively Manufactured Ti-5Al-5V-5Mo-3Cr (wt.%)
Novel Ti-Ta-Zr-Mo Alloys Utilizing Martensite-Driven TRIP/TWIP Mechanisms for Cardiovascular Stent Applications
Surface Engineering Ti Alloys and Stress Impacts on Recrystallization
Tailoring Strength and Toughness of a New Titanium Alloy, ATI Titan 23™
Titanium Boron Nitride Nanotubes (Ti-BNNT) Metal Matrix Composite Processed by SPS: Microstructure, Mechanical and Tribological Characteristics
Tuning Alpha Microstructures in Beta Titanium Alloys

Questions about ProgramMaster? Contact programming@programmaster.org