ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments
Presentation Title Development of an In-Situ Mechanical Test System for Advanced Reactor Coolants
Author(s) Jake Quincey, Peter Beck, Josef Parrington, Lars Parrington, Christopher Lamb, Henry Korellis, Pit Schulze, Alan Kruizenga, Micah Hackett, George Young, Julie Tucker, Samuel Briggs
On-Site Speaker (Planned) Jake Quincey
Abstract Scope Advanced reactor coolants such as liquid sodium and molten salts pose unique obstacles for test systems designed to study environmentally assisted cracking (EAC). Challenges with in-situ testing include high temperature operation with simultaneous coolant chemistry control, all while necessitating access to the sample for real-time load control and monitoring of crack initiation and growth. The present work has developed an in-situ mechanical test system that addresses these issues and is capable of state-of-the-art, fracture mechanics-based EAC testing in liquid sodium and molten salt coolant environments. This test system is constructed from stainless steel to minimize dissimilar metal contact, enables electrical isolation of the test sample for potential drop monitoring of cracking, and utilizes a novel pumped ‘cold leg’ to prevent excessive corrosion product buildup in the coolant. The key features of the system and initial results from testing in FLiNaK will be described.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

In Situ Observation of Short- and Long-Timescale Material Property Evolution Under Extreme Conditions
Analysis of Heavy Ion Irradiation Damage in Commercially Pure Titanium and Titanium Alloys
Benefits of Using High Energy Ions in Ion Irradiation Experiments to Evaluate Void Swelling
Characterization of Microstructure Evolution in Ceramic Materials Using Acoustic and Thermal Transport Measurements
Characterization of Stress and Environment Dependent Fracture Mechanisms of SiC/SiC CMCs
Controlling Helium Morphology in Pure Metals: Effects of Helium Defects on Deformation and Strength
Corrosion Control of Austenitic Stainless Steel and Nickel-Based Alloys in Molten Chloride Salt Environments
Design of a Hot Hydrogen Test Loop for Testing of Nuclear Thermal Rocket Elements
Development of a Combined Thermal Hydraulic and Materials Corrosion Liquid-Sodium Experimental Facility
Development of an In-Situ Mechanical Test System for Advanced Reactor Coolants
Effects of Post-Processing Variability on Radiation Response of Additively-Manufactured HT9
Enabling In-situ Crack Growth Testing and Monitoring in VTR Cartridge Loop Environments
Explaining the Corrosion Morphology of Structural Materials in Molten Fluoride Salts With/Without Radiation
Fundamental In-situ Experiments Coupled to High-throughput Approaches to Understand Radiation Damage in FCC and BCC Compositionally Complex Alloys
In situ Crack Loading and Measurement Techniques for Gen IV Reactor Coolant Media
In Situ Observation of Irradiation Damage in Polycrystalline Nuclear Graphite
Investigation of Uranium Silicide Fuel Form Additions through Rietveld Refinement and Internal Standard P-XRD
Mobility of Hydrogen in YH2 Probed by Nuclear Magnetic Resonance
Modified stereo TEM for 3D analysis of defects
Nanomechanical Change of Tungsten in ELM Conditions
Nonlinear Ultrasound for Nondestructive Evaluation of Microstructural Defects
Response of an Additively Manufactured 316 Stainless Steel Subjected to High Temperature Heavy Ion Irradiations
Selective Irradiation Behavior in Dual Phase 308L Filler of SA508-304L Dissimilar Metal Weldment after Proton Irradiation
STEM Characterization of Dislocation Loops for an Irradiated Model FCC Alloy
Study on Hydrogen Isotopes Solubility and Diffusivity in Y- and Co-doped Barium-zirconates Using Tritium Imaging Plate Technique
Swelling of Nuclear Reactor Steels: Modeling, Theory, and Accelerated Testing
Unveiling High Temperature Damage Mechanisms via In-situ Digital Image Correlation of Chromium-coated Zirconium-based Fuel Claddings

Questions about ProgramMaster? Contact programming@programmaster.org