ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications
Presentation Title Ceramic 3D Printing Utilizing Binder Jetting Technology for Medical Uses
Author(s) Sagar K G
On-Site Speaker (Planned) Sagar K G
Abstract Scope This proposed research and development project uses binder jetting to create a medical ceramic 3D printing system. The system produces biocompatible ceramic components for implants and medical devices with design flexibility for better patient outcomes. The project will evaluate the mechanical and biocompatibility of the produced parts and optimize the 3D printing process for biocompatible ceramic parts, including material selection and process parameters. The proposed system could reduce the cost of biocompatible ceramic parts, making it appealing to the healthcare sector, which is seeking cost-effective manufacturing methods. The project team's mechanical engineering, biotechnology, and materials science experts create the proposed system. The project's ultimate goal is to develop a novel and inventive method for manufacturing medical devices and implants, which could lead to significant innovations, patents, and a healthcare startup company.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Novel Integrated Additive Manufacturing and Laser Processing Method for Protonic Ceramic Energy Devices
Additive Continuous Microwave Sintering for Lunar Construction
Additive Manufacture of Cordierite Ceramic Materials via Digital Light Processing
Additive Manufacturing of Solid-state Electrolytes for Lithium Metal Batteries
Aqueous Slurry Development and Characterization for Multiple-Oxide Direct Ink Writing
Ceramic 3D Printing Utilizing Binder Jetting Technology for Medical Uses
Challenges and Future Directions for Ceramic Additive Manufacturing in Incorporation of Fiber Reinforcements and Machine Learning Strategies
Custom Manufacturing of Shape-conforming Battery Components Using VPP
Direct Ink Writing of Semiconductive Oxide-based Sensors for High-temperature Applications
Evaluation of Calibration Measurements for Accelerated Development of Ceramic Vat Photopolymerization Process and Post-process Parameters
Fused Deposition Modeling of Polycarbosilane to Manufacture Silicon Carbide-based Materials
Hydrothermal-assisted Jet Fusion: A Selective Cold Sintering Approach
Laser Powder Bed Fusion of Tungsten Carbide-Nickel Geometries Leveraging Thermomechanical Modeling
Materials Development for Demanding Applications with Binderjet WC-Co
The Influence of Print Layer Orientation on the Mechanical Properties of SIC and CF/SIC CMCS Formed via Direct Ink Writing
Ultra-fast Laser Sintering of Ceramics and Glasses, and Machine Learning-based, Processing-microstructure-property Predictions for Laser-sintered Ceramics and Glasses
Use of Powder Bed Fabrication Processes for Ceramic Additive Manufacturing

Questions about ProgramMaster? Contact programming@programmaster.org