ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Composition–Processing–Microstructure-Property Relationships of Titanium Alloys
Presentation Title Surface Engineering Ti Alloys and Stress Impacts on Recrystallization
Author(s) David Brice, David F. Bahr
On-Site Speaker (Planned) David Brice
Abstract Scope Mechanical treatments to create compressive residual stress are used to improve the mechanical performance of alloys. Heat treatments that involve recrystallization commonly decrease residual stresses formed from shot peening. In this study we develop ultra-fine grain structures in three Ti alloys with colony, basket weave, and lamellar precipitates. Microstructures were peened to control residual stresses on the order of 200 to 800 MPa to depths of about 200 microns; the surface nanoindentation hardness after peening was 3-4 GPa (depending on the alloy). Thermal treatment recrystallized the top 2-5 microns of the surface, which lowered residual stresses but formed a grain size between 350 and 700 nm. The resulting hardness increased to 4-5 GPa. The surface hardness was achieved with no decrease in bulk hardness; the compressive residual stress stabilizes the alpha phase in beta Ti alloys, allowing for controlled precipitation and gradients in microstructure with no changes in bulk chemistry.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Study on High-Temperature Deformation Behavior, Mechanism and Microstructure Evolution of Ti-900 Alloy for Gas Turbine Blade Application
An AM Defect Model for Fast-Acting Probabilistic Prediction of Defects in Laser Powder Bed Fusion and Its Application to Ti-6Al-4V
ATI High Temperature Titanium Alloy Development for Aerospace Applications
ATI Titan 27® : Exploiting c+a Slip to Improve Performance for Aerospace
Cross-Slips in a Near-α Titanium Alloy Made by Additive Manufacturing
Deformation and Fracture at Basal Twist Grain Boundaries In Ti-6Al-4V
Effects of Temperature on the Deformation Behavior and Microstructural Evolution during the Hot Compression Test of Ti-6Al-2V-1Fe-1Cr Alloy
Experimental Investigations on Thermomechanical Fatigue Behavior in Near Alpha Titanium Alloy
Heterogeneous Nano-Mechanical Response of Bimodal Ti-6Al-4V Alloy
Influence of Zr and O on the Evolution of Microstructural Features in High γ-Phase Ti-Al-Zr Alloys
Investigating Cold Dwell Fatigue Failure in Dual-Phase Ti Alloys: The Perspective of Hard-Soft Grain Interactions
Laser Shock Processing of Titanium Alloys: Microstructure Evolution and Enhanced Engineering Performance
Metastable and Stress-Induced Transformations in Additively Processed Ti-10V-2Fe-3Al
Microstructure, Mechanical, and Electrochemical Properties of Additively Manufactured Ti-5Al-5V-5Mo-3Cr (wt.%)
Novel Ti-Ta-Zr-Mo Alloys Utilizing Martensite-Driven TRIP/TWIP Mechanisms for Cardiovascular Stent Applications
Study of Microstructure of Titanium Alloys and Its Relation to Mechanical Properties of Alloys for Aerospace Industry
Surface Engineering Ti Alloys and Stress Impacts on Recrystallization
Tailoring Strength and Toughness of a New Titanium Alloy, ATI Titan 23™
Titanium Boron Nitride Nanotubes (Ti-BNNT) Metal Matrix Composite Processed by SPS: Microstructure, Mechanical and Tribological Characteristics
Tuning Alpha Microstructures in Beta Titanium Alloys

Questions about ProgramMaster? Contact programming@programmaster.org