About this Abstract |
Meeting |
2023 TMS Annual Meeting & Exhibition
|
Symposium
|
Advanced Characterization Techniques for Quantifying and Modeling Deformation
|
Presentation Title |
Three-dimensional Assessment of Strain Localization at the Sub-grain Level of a Ni-based Superalloy at Low and High Temperature Using Laser Scanning Confocal Microscopy |
Author(s) |
Damien Texier, Malo Jullien, Ali Rouwane, Julien Genée, Jean-Charles Stinville, Marc Legros, Jean-Charles Passieux |
On-Site Speaker (Planned) |
Damien Texier |
Abstract Scope |
High resolution-digital image correlation (HR-DIC) techniques are well established to measure strain localization at the sub-grain level in polycrystalline materials. HR-DIC was generally conducted under scanning electron microscopy (SEM) to gain in spatial resolution and micrograph repeatability. However, HR-DIC under SEM only informs on the in-plane kinematics field at the surface of the deformed specimens. This technique is particularly appropriate when the out-of-plane motion related to the three-dimensional (3D) strain localization can be evaluated from another source, i.e., slip events in combination with EBSD. Non-crystallographic strain localization, such as grain boundary sliding, requires the development of 3D measurement techniques. Laser scanning confocal microscopy (LSCM) using near-UV monochromatic source provides less resolved in-plane micrographs but topographic information with a high accuracy (< 15 nm in height). A 3D formulation of the HR-DIC problem was thus implemented to evaluate the full-field strain localization in 3D in a Ni-based superalloy at different temperatures. |
Proceedings Inclusion? |
Planned: |
Keywords |
Mechanical Properties, Characterization, High-Temperature Materials |