ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Characterization of Materials through High Resolution Coherent Imaging
Presentation Title Explanation of the High-Dielectric Constant of BaTiO3 Used in Multilayer Capacitors
Author(s) Ian Robinson
On-Site Speaker (Planned) Ian Robinson
Abstract Scope This invited talk will introduce the "phase domain" concept of disorder in nanocrystals. Domains are accessible by Bragg Coherent Diffraction Imaging (BCDI) which is used to understand the "microstrain" defined by the classical Williamson-Hall analysis of powder diffraction data. As an illustration, we examine why the dielectric constant of nanoparticle Barium Titanate (BaTiO3, BTO) is three times higher than macroscopic material. BTO is used in Multilayer Ceramic Capacitors, which make use of this lead-free nanoscale dielectric material. While classical XRD shows the material is cubic, X-ray pair distribution function measurements clearly show the local structure is lower symmetry than cubic. 3D BCDI of selected nanocrystals, reveals the existence of ~50 nanometer-sized phase domains, interpreted as tetragonal twins, which cause the average crystalline structure to appear cubic. The ability of these twin boundaries to migrate under the influence of electric fields explains the dielectric advantage of the nanocrystals.
Proceedings Inclusion? Planned:
Keywords Ceramics, Nanotechnology, Computational Materials Science & Engineering

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

AI-Driven Workflow for Autonomous High-Resolution Scanning X-Ray Microscopy
Bragg Coherent Diffractive Imaging With Twisted X-Rays
Characterization of Crystalline Materials at the Atomic Scale with X-Ray Bragg Coherent Diffraction Imaging
Coherent x-Ray Diffraction Imaging Dedicated Beamlines at PLS-II and Korea-4GSR
Direct Reciprocal Space Detection of Microelectronic Defects Using Coherent X-Ray Diffraction and Unsupervised Machine Learning
Enhanced Mineral Characterization With 3D X-Ray CT and AI-Driven Imaging
Explanation of the High-Dielectric Constant of BaTiO3 Used in Multilayer Capacitors
High-Resolution X-Ray Imaging of Integrated Circuits
High Bandwidth Scanning X-Ray Microscopy
In-Situ/Operando Bragg Coherent X-Ray Diffraction Imaging for Catalysis Studies
ML-Guided Non-Destructive 3D Metrology of Functioning Devices With an X-Ray Laser
Nanoholotomography With Coded Apertures for Efficient Dynamic Imaging of Nanomaterials
Operando and Linear Dichroic Ptychographic Spectro-Tomography of Heterogenous Catalysts
Origin of Structural Degradation in Layered Oxide Cathode for Li-Ion Batteries
Physics-Informed Self-Supervised Learning of Structural Morphology Imaged by Scanning X-Ray Diffraction Microscopy
Probing Cryogenic Strain Evolution in SrTiO3 Using Multi-Reflection Bragg Coherent Diffraction Imaging
Rapid Reconstruction of the Full Strain Tensor via Coupled Phase Retrieval With Multipeak Bragg Coherent Diffraction Imaging
Real-Time Imaging of Subsurface Dislocation Dynamics
Simultaneous Reciprocal and Real Space X-Ray Imaging for Hierarchical Characterization of 3D Nano-Architected Metamaterials
Single-Exposure Elemental Differentiation and Texture-Sensitive Phase-Retrieval Imaging with a Neutron-Counting Microchannel-Plate Detector
Single-Shot X-Ray Imaging of Density in Laser Shocked Materials for Fusion Energy Studies
Synchrotron Ptychographic X-Ray Computed Tomography (PXCT) to Study Micro-Fabricated Fully Hybrid 3D Metal-Ceramic Metamaterials
Three-Dimensional Hard X-Ray Ptychographic Reflectometry Imaging on Extended Mesoscopic Surface Structures

Questions about ProgramMaster? Contact programming@programmaster.org