Abstract Scope |
Polyamorphism is critical to our fundamental understanding of amorphous solids and the corresponding elusive liquid-liquid transitions, an intriguing but controversial topic over the last decades.In our work, by combining in-situ high-pressure x-ray diffraction (XRD), in-situ high-pressure Ce L3-edge x-ray absorption spectroscopy (XAS), and molecular dynamics (MD) simulations, a transition from a low-density amorphous state to a high-density amorphous state is confirmed in a lanthanide-solute metallic glass, Al93Ce7, with an extremely low Ce concentration.Our results provide explicit evidence for the existence of polyamorphism in dilute 4f element-bearing metallic glasses, extending the compositional space from the solvent end to the very dilute solute end for the first time. This finding could provide new insights into the chemical effect on the polyamorphism in MGs and also highlights the critical role of “minor alloying” elements in affecting properties of MGs. |