ProgramMaster Logo
Conference Tools for MS&T21: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T21: Materials Science & Technology
Symposium Materials Informatics for Images and Multi-dimensional Datasets
Presentation Title Graph Neural Networks for an Accurate and Interpretable Prediction of the Properties of Polycrystalline Materials
Author(s) Minyi Dai, Mehmet F. Demirel, Yingyu Liang, Jiamian Hu
On-Site Speaker (Planned) Jiamian Hu
Abstract Scope Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we develop a graph neural network (GNN) model for obtaining an embedding of polycrystalline microstructure which incorporates not only the physical features of individual grains but also their interactions. The embedding is then linked to the target property using a feed-forward neural network. Using the magnetostriction of polycrystalline Tb0.3Dy0.7Fe2 alloys as an example, we show that a single GNN model with fixed network architecture and hyperparameters allows for a low prediction error of ~10% over a group of remarkably different microstructures as well as quantifying the contribution of each grain in a microstructure to its magnetostriction. Such microstructure-graph-based GNN model therefore enables an accurate and interpretable prediction of the properties of polycrystalline materials.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Building a Database of Fatigue Fracture Images to train a CNN
Characterization of Additively Manufactured ZrB2-SiC Ultra High Temperature Ceramics via X-ray Microtomography
Graph Neural Networks for an Accurate and Interpretable Prediction of the Properties of Polycrystalline Materials
Machine Learning and Image Processing Techniques for Materials Evaluation
Machine Learning Ferroelectrics: Bayesianity, Parsimony, and Causality
Multivariate Statistical Analysis (MVSA) for Hyperspectral Images
Now On-Demand Only - Computational or Experimental? Interpreting X-ray Absorption and Diffraction Contrast for Massive Non-destructive 3D Grain Mapping of Metals in Laboratory CT
Open-source Hyper-dimensional Materials Analytics Using Hyperspy
Quantitative Comparisons of 2D Microstructures with the Wasserstein Metric
Spatial and Statistical Representation of Strain Localization as a Function of the 3D Microstructure Using Multi-modal and Multi-scale Data Merging
Training Deep-learning Models with 3D Microstructure Images to Predict Location-dependent Mechanical Properties in Additive Manufacturing
Understanding Degradation and Failure Mechanisms by Multiscale and Multiresolution Electron Microscopy

Questions about ProgramMaster? Contact programming@programmaster.org