Abstract Scope |
Nanocrystalline (nc) metals are generally strong yet thermally unstable, rendering them difficult to process and unsuitable for use, particularly at elevated temperatures. Nc multicomponent and high-entropy alloys (HEAs) are found to offer enhanced thermal stability but only in a few empirically discovered systems out of a vast compositional space. In response, this work develops a combinatorial strategy to accelerate the discovery of nc-(TiZrHf)x(NbTa)1−x alloy library with distinct thermal stability, in terms of phases and grain sizes. Based on synchrotron X-ray diffraction and electron microscopy characterizations, a phase transition is observed from amorphous–crystalline nanocomposites to a body-centered cubic (bcc) phase upon annealing. With increased NbTa content (decreased x value), the system tends to achieve thermally stable dual bcc phases upon annealing; in contrast, alloys with increased TiZrHf content (x > 0.6) maintain a single-composition nanocomposite state, impeding crystallization and grain growth. |