ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Additive Manufacturing Modeling and Simulation: AM Materials, Processes, and Mechanics
Presentation Title Fabrication of Ceramic Core for Single Crystal Casting of Gas Turbine Blade
Author(s) Hye-Yeong Park, Eun-Hee Kim, SeungCheol Yang, Hyun-Hee Choi, Jing Zhang, Yeon-Gil Jung
On-Site Speaker (Planned) Hye-Yeong Park
Abstract Scope A ceramic core employed in a single-crystal casting process should endure for a long time at casting temperatures above 1500 ℃. In this work, an inorganic binder was applied to fabricate cores with sufficient strength and complete elution characteristics to withstand casting temperatures. The ceramic powder was coated with a silica precursor, and then dried at 80 ℃ for 1 h. The dried powder was mixed with wax and injection-molded. The injected core was heat-treated at 1200 and 1500 ℃ for 1 h. The additional heat treatment at 1550 ℃ for 3 h. The inorganic binder-coated core with a superior firing strength had no cracks or surface defects after the heat treatment, compared with the core without the inorganic binder. In addition, the turbine blade was well-cast as a single crystal and the internal core was completely eluted.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Discrete Dendrite Dynamics Model for Fast Epitaxial Columnar Grain Growth in Metal Additive Manufacturing
A Process Parameter Prediction Framework for Metal Additive Manufacturing
A System Dynamics approach to submodels for Residual Stress Predictions of SLM Parts
Cellular Automata Modeling of Microstructure Resulting from Novel Scan Patterns in Selective Laser Melting
Control of High-temperature Drop-on-demand Metal Jetting through Numerical Modelling and Experimentation
Creep Modeling of 3D Printed 718 Nickel Alloys
Defect-based Fatigue Model for AlSi10Mg Produced by Laser Powder Bed Fusion Process
Design Optimization for Residual Stress in Complex Low-density Support Regions
Development of Temperature History Profiles for Production of Ti-6Al-4V Using a Semi-Analytical Model
Expanding Process Space of Laser Powder Bed Additive Manufacturing Using Alternative Scan Strategies
Experimental and Modeling Study of Gas Adsorption in Metal-organic Framework Coated on 3D Printed Plastics
Fabrication of Ceramic Core for Single Crystal Casting of Gas Turbine Blade
Feature Engineering for Surrogate Models of Consolidation Degree in Additive Manufacturing
In-situ Monitoring of Powder Flow in Direct Energy Deposition Additive Manufacturing
Mechanical and Surface Properties of Inconel 718 Alloy Fabricated by Additive Manufacturing
Modeling Hot Cracking in Metal Additive Manufacturing
Modeling of Electron Beam Physical Vapor Deposition Process for Fabricating Thermal Barrier Coatings
Modeling of Impact Property of 3D Printed 718 Nickel Alloys
Multi-Fidelity Surrogate Assisted Prediction of Melt Pool Geometry in Additive Manufacturing
Phase Field Modeling of AM Solidification Microstructure with Algorithmic Feature Extraction to Facilitate Reduced Order Model Development
Phase Field Simulations of Solid-state Precipitation in AM-processed 625 and 718 Alloys during Post-process Annealing
Probabilistic Process Design of Laser Powder Bed Fusion Using Coupled Monte Carlo and Inverse First Order Reliability Method
Property Measurements for Modeling the Process-structure-property Relationships in Additive Manufacturing
Reduced-order Process-structure Linkages during Post-Process Annealing of an Additively Manufactured Ni-base Alloy
Strength Improvement of The Ceramic Core by Applying Dual Polymers In 3D Printing Process
Stress State Dependent Plasticity and Fracture Properties of Additively Manufactured Stainless Steel 316L
Transient Evolution of Columnar Dendrites during Additive Manufacturing – Implications for Process Simulations
Virtual Reality Module for Additive Manufacturing Education

Questions about ProgramMaster? Contact programming@programmaster.org