ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Understanding High Entropy Materials via Data Science and Computational Approaches
Presentation Title Screening High-Entropy Oxide Compositions Using Machine Learned Interatomic Potential
Author(s) Jacob Tyler Sivak, Saeed S.I. Almishal, Yueze Tan, Mary Kate Caucci, Matthew Furst, Dhiya Srikanth, Long-Quin Chen, Christina Rost, Jon-Paul Maria, Susan B Sinnott
On-Site Speaker (Planned) Jacob Tyler Sivak
Abstract Scope High-entropy oxides (HEOs) are characterized by populating the cation sublattice with many elements at random, resulting in extreme chemical disorder at the atomic scale. Discovery of new HEOs has been a laborious endeavor largely driven by experimental trial-and-error, where commonly-used computational approaches such as density functional theory are still far too expensive for adequate exploration of composition space. We have leveraged recent advances in machine learning interatomic potentials to circumnavigate the high-dimensional composition space of rocksalt HEOs. Formulated descriptors using these simulations allow for all rocksalt HEO compositions to be correctly identified as both single- and multi-phase from experimental results. This work predicts a multitude of unexplored HEO compositions awaiting discovery, as well as provides a framework for extension to other crystal systems and elements.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A First Principles High Throughput Screening Method for Corrosion Resistant High Entropy Materials
Analyzing, Understanding, and Guided Design of Solid Disordering by the Density of Atomistic States (DOAS)
Characterization of Thermal Sprayed Ultrahard Coatings for Stamping Die Surfaces from Refractory High Entropy Alloys Designed Using DFT Calculations
Contributions to Diffusion in Complex Materials Quantified with Machine Learning
Design Metastability in High-Entropy Alloys by Tailoring Unstable Fault Energies
Electronic-Structure-Guided Tailoring of Refractory High-Entropy Alloys for Extreme Environment
Electronic Descriptors for Dislocation Deformation Behavior and Intrinsic Ductility in bcc High-Entropy Alloys
Entropy for Energy: High-Entropy Materials for Energy Applications
Factors Affecting Calculated Properties of RHEAs Using Density Functional Theory
From BIG-Data to HOT-Properties of High-Entropy Carbides and Carbo-Nitrides
Grain Boundary Segregation-Driven Elemental Patterning Amplifies Chemical Short-Range Order in NiCoCr
Lattice Correspondence Analyses of Phase Transformations in a High Entropy Alloy
Machine Learning Design of Additively Manufacturable Tungsten-Based Refractory Multi Principle Element Alloys with Enhanced Strength at Extreme Temperatures
Modeling Distribution of Unstable Stacking Fault Energy in bcc Refractory High-Entropy Alloys and its Implication to Ductility Assessment
Predicting Intrinsic Ductility of Refractory High Entropy Alloys
Predictive Screening of Phase Stability in High-Entropy Borides
Screening High-Entropy Oxide Compositions Using Machine Learned Interatomic Potential
Spinel-Structured Precipitate Morphology in High-Entropy Mg0.2Ni0.2Co0.2Cu0.2Zn0.2O Epitaxial Films: Thermodynamic and Phase-Field Investigations
ULTERA: A Data Ecosystem for High Entropy Materials (HEMs)
Using Materials Informatics to Quantify Complex Correlations Linking Structure, Properties and Processing in High-Entropy Alloys
Utilizing Atomistic Calculations for Processing High-Value Magnetic Material Derived from FeNiMoW

Questions about ProgramMaster? Contact programming@programmaster.org