About this Abstract |
Meeting |
TMS Specialty Congress 2025
|
Symposium
|
The 7th International Congress on 3D Materials Science (3DMS 2025)
|
Presentation Title |
3D Reconstruction of a High‑Energy Diffraction Microscopy Sample Using Multi‑Modal Serial Sectioning with High‑Precision EBSD and Surface Profilometry |
Author(s) |
Gregory E. Sparks, Simon A. Mason, Michael G. Chapman, Jun-Sang Park, Hemant Sharma, Peter Kenesei, Stephen R. Niezgoda, Michael J. Mills, Michael D. Uchic, Paul A. Shade, Mark Obstalecki |
On-Site Speaker (Planned) |
Gregory E. Sparks |
Abstract Scope |
High-energy diffraction microscopy (HEDM) combined with in-situ mechanical testing is a powerful nondestructive technique for tracking the evolving microstructure within polycrystalline materials during deformation. However, it is known that HEDM can fail to identify certain microstructural features, particularly smaller grains or twinned regions. Characterization of the identical sample volume using high-resolution surface-specific techniques, particularly electron backscatter diffraction (EBSD), can not only provide additional microstructure information about the interrogated volume but also highlight opportunities for improvement of the HEDM reconstruction algorithms. In this study, a sample fabricated from undeformed “low solvus, high refractory” nickel-based superalloy was scanned using HEDM. The volume interrogated by HEDM was then carefully characterized using a combination of surface-specific techniques, including epi-illumination optical microscopy, zero-tilt secondary and backscattered electron imaging, scanning white light interferometry, and high-precision EBSD. Custom data fusion protocols were developed to integrate and align the microstructure maps captured by these surface-specific techniques and HEDM. |
Proceedings Inclusion? |
Undecided |