ProgramMaster Logo
Conference Tools for TMS Specialty Congress 2025
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting TMS Specialty Congress 2025
Symposium Joint Sessions of AIM, ICME, & 3DMS
Presentation Title Generalized Graph Foundation Models as Versatile Data-Driven Digital Twins for Complex Technological Systems
Author(s) Pawan Kumar Tripathi, Benjamin G. Pierce, Hein Htet Aung, Tommy Ciardi, Kristen Hernandez, Raymond J. Wieser, Yangxin Fan, Weiqi Yue, Erika I. Barcelos, Jayvic Cristian Jimenez, Brian Giera, Robert Gao, Mengjie Li, Kristopher Davis, Laura Bruckman, Roger French
On-Site Speaker (Planned) Pawan Kumar Tripathi
Abstract Scope Generalized graph foundation models offer a flexible approach to constructing data-driven digital twins (ddDTs) for complex technological systems. Unlike traditional, physics-based digital twins that require idealized models built from first principles, ddDTs leverage real-world data streams to provide adaptable and modular representations of system behavior. By using spatiotemporal graph neural networks (st-GNNs) as a foundation, ddDTs capture dynamic interactions and performance characteristics, allowing for accurate monitoring and prediction across a range of applications. This work introduces a unified pipeline to develop graph-based foundation models for diverse systems, including solar photovoltaic fleets, direct ink write additive manufacturing, and laser powder bed fusion. The proposed approach avoids the constraints of physics-based assumptions, enabling a single ddDT architecture to address various performance issues and operational questions without extensive reconfiguration. These foundation models streamline digital twin implementation, supporting efficient, data-driven decision-making in technologically complex environments.
Proceedings Inclusion? Definite: Post-meeting proceedings

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Architecture for Developing an Image Recognition Model Workflow for Workplace Safety Application
Automated 3D Microstructural Characterization of a Dual-Phase Steel Using the RASSI Platform
Building a Self-Driving Lab From Scratch
Customizing the NIMS RDE System for Optimal Data Management
Digital Twins for Accelerated Materials Innovation
Efficient, Coupled Process-Structure-Property Simulations of Additive Manufacturing Using the “Materialize” Framework
Enhancing AI Readiness Through Data Stewardship, Modular Ontologies, and FAIR Data Workflows
FactoryNet: A Labeled Image Dataset for the Manufacturing Environment
FIB-SEM Serial Sectioning Tomography: Towards 24-Hour Time-to-Results
Generalized Graph Foundation Models as Versatile Data-Driven Digital Twins for Complex Technological Systems
Harnessing Deep Learning Conditional Diffusion Models for Microscopy Modality Transfer of Light Optical Microscopy to Electron Backscattering Microscopy Diffraction Misorientations
Harnessing Multi-Modal Metrology Data for Predictive Modeling in Laser Powder Directed Energy Deposition
Hydro Quebec Efforts Toward ICME: Characterizing the Microscale Tensile Behavior of Hydraulic Turbine Steels With Micro-Tensile and Nano-Indentation Tests
Influence of 3D Crack Networks for High Toughness Responses in Tantalum Carbides
Innovations in 3D EBSD for Advanced Materials Characterization
Laser Assisted Machining of Niobium C103 and Optimization of Machining Parameters Using AI/ML Techniques
Manufacturing and Control of Fiber Reinforced Polymer Composites Through FMEA-Based Digital Twin
Materials Microstructure Design Integrated With Image-Based Simulation
Modelling Physical-to-Virtual Feedback Flow of Digital Twins for Induction Furnace
Modular and Interoperable Materials Data Science Ontology (MDS-Onto) for Knowledge Graphs and Semantic Reasoning
NFDI MatWerk Ontology: A Framework for FAIR Data Management in the Materials Science and Engineering
NIMS's Data-Driven Materials Research Platform: Enhancing MLOps With Literature-Based Data Integration
Ontology-Based Materials Data Management for High Temperature Alloy Oxidation Data
Pinax: A Machine Learning Platform for Data-Driven Materials Development
Practical Data Management in Computational Materials for Qualification and Certification
Smart Sustainable Packaging for Local Fruits—TRACE Your Food, KNOW Your Food, TAKE CARE of Trash
The Materials Science and Engineering Knowledge Graph: Establishing a Centralized Metadata Index for Enhanced Data Integration
Toward Sentient Manufacturing
Towards Structured Data Spaces: Prototypical Application of Semantic Technologies as a Driver for Innovation in Materials Science
Transforming Materials Science With Concepts for a Semantically Accessible Data Space
Uncertainty Quantification, Error Propagation, and Sensitivity Analysis for Synchrotron X-Ray Residual Stress Measurements
Using Novel EBSD Methods to Analyze Plastic Strain in Structural Alloys
X-Ray Diffraction Analysis Using TensorFlow and FAIR Data Pipelines
"Advanced Calibration of GTN Damage Model for Aluminum Alloy AA6111 Using Digital Image Correlation and Bayesian Inference"

Questions about ProgramMaster? Contact programming@programmaster.org