ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Composition–Processing–Microstructure-Property Relationships of Titanium Alloys
Presentation Title Microstructure, Mechanical, and Electrochemical Properties of Additively Manufactured Ti-5Al-5V-5Mo-3Cr (wt.%)
Author(s) Zia Uddin Mahmud, Taylor Kmetz, Luke Rice, Jonathan H. Dwyer, Carl J. Boehlert, Greg Swain
On-Site Speaker (Planned) Zia Uddin Mahmud
Abstract Scope The additive manufacturing technique has achieved success in the processing of β-Ti alloys with minimal waste and good control of the diffusion of interstitial elements. Titanium alloys are widely used in a variety of industries, including automotive and aerospace, due to their high strength-to-weight ratio. In the present study, Ti-5Al-5V-5Mo-3Cr (wt.%) alloy specimens were fabricated using layer-by-layer deposition through selective laser melting (SLM). The specimens exhibited a nominal density of 4.55 ± 0.02 g/cm3, suggesting they were 98% dense. X-ray diffraction revealed that both the α and β phases were present. Optical microscopy and scanning electron microscopy showed α precipitates in columnar β matrix. The as-processed material exhibited a yield strength of 707 MPa, and elongation-to-failure of 4%, and a microhardness of 292 HV. Electrochemical characterization of the surface-pretreated alloys revealed reproducible open circuit potentials, polarization resistances, and potentiodynamic polarization curves in naturally aerated 3.5 wt.% NaCl at room temperature.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Study on High-Temperature Deformation Behavior, Mechanism and Microstructure Evolution of Ti-900 Alloy for Gas Turbine Blade Application
An AM Defect Model for Fast-Acting Probabilistic Prediction of Defects in Laser Powder Bed Fusion and Its Application to Ti-6Al-4V
ATI High Temperature Titanium Alloy Development for Aerospace Applications
ATI Titan 27® : Exploiting c+a Slip to Improve Performance for Aerospace
Cross-Slips in a Near-α Titanium Alloy Made by Additive Manufacturing
Deformation and Fracture at Basal Twist Grain Boundaries In Ti-6Al-4V
Effects of Temperature on the Deformation Behavior and Microstructural Evolution during the Hot Compression Test of Ti-6Al-2V-1Fe-1Cr Alloy
Experimental Investigations on Thermomechanical Fatigue Behavior in Near Alpha Titanium Alloy
Heterogeneous Nano-Mechanical Response of Bimodal Ti-6Al-4V Alloy
Influence of Zr and O on the Evolution of Microstructural Features in High γ-Phase Ti-Al-Zr Alloys
Investigating Cold Dwell Fatigue Failure in Dual-Phase Ti Alloys: The Perspective of Hard-Soft Grain Interactions
Laser Shock Processing of Titanium Alloys: Microstructure Evolution and Enhanced Engineering Performance
Metastable and Stress-Induced Transformations in Additively Processed Ti-10V-2Fe-3Al
Microstructure, Mechanical, and Electrochemical Properties of Additively Manufactured Ti-5Al-5V-5Mo-3Cr (wt.%)
Novel Ti-Ta-Zr-Mo Alloys Utilizing Martensite-Driven TRIP/TWIP Mechanisms for Cardiovascular Stent Applications
Study of Microstructure of Titanium Alloys and Its Relation to Mechanical Properties of Alloys for Aerospace Industry
Surface Engineering Ti Alloys and Stress Impacts on Recrystallization
Tailoring Strength and Toughness of a New Titanium Alloy, ATI Titan 23™
Titanium Boron Nitride Nanotubes (Ti-BNNT) Metal Matrix Composite Processed by SPS: Microstructure, Mechanical and Tribological Characteristics
Tuning Alpha Microstructures in Beta Titanium Alloys

Questions about ProgramMaster? Contact programming@programmaster.org