ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Frontiers of Machine Learning on Materials Discovery
Presentation Title Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters
Author(s) Han Hao, Felix Strieth-Kalthoff, Alan Aspuru-Guzik
On-Site Speaker (Planned) Han Hao
Abstract Scope Contemporary materials discovery requires intricate sequences of synthesis, fabrication and functional characterization that often span multiple locations with specialized expertise and instrumentation. Here we present a cloud-based solution enabling AI-guided, asynchronous, and delocalized design–make–test-analyze cycles to integrate these workflows. We applied a building-block strategy for assembling molecular function enables automated synthesis on geographically distributed yet connected platforms, orchestrated by a central cloud platform, with the integration of an AI-based experiment planner and an in-line property characterization module to accelerate the discovery of top-performing organic solid-state laser molecules as demonstrated by the best ever thin-film device performance. Empowered by asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing – and democratizing – scientific discovery, in which we are endeavoring a global community of accelerated material discovery and self-driving laboratories based on the framework of the Acceleration Consortium at the University of Toronto.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Hierarchical Machine Learning Scheme to Identify Promising New Scintillators
abICS Framework for ab initio Statistical Thermodynamics of Complex Oxides Accelerated by Machine Learning
Accelerating Defect Predictions in Semiconductors Using Crystal Graphs
Accelerating Electron Microscopy and Experimentation through Acceptance of ML/AI
Autonomous Materials Synthesis System for Inorganic Thin Films Utilizing AI and Robotics
Bayesian optimization of CG topologies: Applications to common polymers
Data-Driven Accelerated Discovery of Novel Battery Materials
Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters
Exploring New Frontiers in Inverse Materials Design through Graph Neural Networks and Large Language Models
Inverse Design of Quantum Materials by High-Throughput Calculations and Optimization Techniques
Machine-Learning-Aided Discovery of Metal-Organic Frameworks for Water Harvesting
Machine Learning in Chemistry: Reactive Force Fields and Beyond
Machine Learning Materials Properties with Accurate Predictions, Uncertainty Estimates, Domain Guidance, and Persistent Online Accessibility
MAXIMA: A High-Throughput Instrument for XRD and XRF Characterization of Materials
Physics-Aware Recurrent Convolutional Neural Networks for Modeling Hotspot Formation and Growth in Energetic Materials
Physics-Informed Machine Learning of Thermodynamic Properties
Physics-Infused Causal and Hypothesis-Driven AI for Advanced Functional Materials
Reinforcement Learning for Materials Science: Algorithms, Challenges and Applications to Improve Understanding of System Dynamics
Role of Domain Knowledge Injection in Data-Driven Methods Towards Accelerating Material Discovery
The Space of Phase Diagrams: Visualization Strategies for Advanced Materials
Towards Automatic Alloy Design via Large Language Model Powered Multi-Agent Collaborations
Using UNET Architecture for Microstructural Image Analysis in Hypoeutectoid Steel
Variable Selection for Small-Scale Chemical Experimental Data Based on Bayesian Inference

Questions about ProgramMaster? Contact programming@programmaster.org