ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques
Presentation Title AI-Driven Kikuchi Pattern Enhancement for Efficient and Robust EBSD Analysis of Highly Deformed Metals
Author(s) Ayoub Dergaoui, Siyu Tu, Noureddine Barka
On-Site Speaker (Planned) Siyu Tu
Abstract Scope Electron backscatter diffraction (EBSD) is an informative tool for studying crystalline materials but is limited by slow analysis speed and high sensitivity to surface quality. EBSD analysis of highly deformed metals often requires a small acquisition step size and suffers from low Kikuchi pattern quality, resulting in lengthy acquisition times and low indexation rates. Pattern averaging is commonly employed to improve the signal-to-noise ratio of Kikuchi bands, thereby boosting the indexation rate, albeit at the cost of increased acquisition time. In this work, we developed a generative adversarial network to enhance Kikuchi patterns for more efficient and robust indexation. This approach significantly improved EBSD acquisition speed by multiple times with the removal of pattern averaging, and increased indexation rates from 50%-70% to over 95% for highly deformed aluminum sheets. This acquire-enhance-index workflow offers a practical solution for large-area, high-quality mapping of highly deformed metals.
Proceedings Inclusion? Planned:
Keywords Characterization, Machine Learning, Aluminum

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Retrieval-Augmented Generation Application in the Dental Composites Space
Accelerated Discovery of Nanostructured High-Entropy Alloys With Superior Thermal Stability
Accelerating Acquisition and Analysis of Nanoscale Microstructural Changes and Secondary Phases Using TEM: New Approaches for Smart Data Collection and On-the-Fly Quantification
Advanced Computational and Data Management Approaches at the Advanced Photon Source
AI-Driven Kikuchi Pattern Enhancement for Efficient and Robust EBSD Analysis of Highly Deformed Metals
AI-Driven Microstructural Data Correlation Using In-Situ Raman Spectroscopy in Self-Driving Lab by Using Chocolate as Frugal Twin
Application of The Polyhedral Template Matching Method for Characterization of 2D Atomic Resolution Electron Microscopy Images
Automated Real-Time 3D Stereo-Reconstructions Through Machine-Learning Based Tracking
Challenges and Opportunities for Rapid EXAFS Analysis of Short-Range Order in HEAs
Characterization within an Automated Lab for Solid State Synthesis - Challenges and Solutions for Data Handling and Interpretation
Comparing Performance of U-Net Based Neural Networks for Automated Detection of Defects in TEM Images of Nuclear Materials
Correlative Microscopy and AI for Rapid Analysis of Complex Material Structures
Deep Learning-Assisted Study of 3D Damage Evolution in Semiconductor Packages under Thermal Cycling Using X-ray Microcomputed Tomography
Deep Learning Conditional Diffusion Models to Recreate Scanning Electron Microscopy Using Light Optical Microscopy Priors
Directing Flow: Pipelines for 3D Data
Efficient SEM Imaging Strategies for Microstructure Analysis in Metal Additive Manufacturing
Enhanced Quantification of Reinforcement Particles in Additively Manufactured IN718 Using Microfocus X-Ray Computed Tomography and CGAL Alpha Wrapping Tool
From Chaos to Clarity: Managing the Materials Data Surge
High-Throughput Quantitative Texture Imaging Using Wide-Field Laser Polarized-Light Microscope
High-Throughput Synthesis and Rapid Characterization of Cu-Ti Alloys
High-Throughput Uniaxial Tensile/Compressive Testing in Additive Manufacturing Using Reference Material Load Cell Method
High Throughput Characterization of 316L Stainless Steel Fabricated Using Laser Powder Bed Fusion
Interrogating 3D Grain Morphology and Crystallographic Texture via Automated Polarized Light Microscopy
Microstructure Informatics: Automated Microstructure Characterization and Neural Network Based Modeling of Processing-Structure-Property Relations
Optimization of Automated Sample Polishing Enabled by the Characterization of Surface Roughness Evolution
Optimizing Nanoindentation Methods for the High Throughput Study of Combinatorial Thin Film Libraries
Overview of Machine Learning in Low-Latency Automated Data Analysis for In-Situ Synchrotron X-Ray Diffraction in Metals and Alloys
Rapid Data-Driven Non-Destructive Inspection of Additively Manufactured IN718 Using the Side-Band Peak Counting (SPC) Non-Linear Ultrasonics Method
Rapid Synthesis, Characterization and Mechanical Testing of Novel Printable Alloys Via Functional Grading in Additive Manufacturing
Real Time Pole Figures from Polycrystalline Samples During Far Field HEDM
Strategies for Accelerated Collection, and Data Curation of Multi-Modal Serial-Sectioning Experiments
Three-Dimensional Laue-Diffraction Microscopy with a Coded Aperture: Principles and High-Performance-Computing Workflow
Towards Accelerated Material Characterization: Uncertainty Quantification in Elemental Analysis

Questions about ProgramMaster? Contact programming@programmaster.org