ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Advanced Biomaterials for Biomedical Implants
Presentation Title Influence of Laser Power and Scanning Speed on Performances of LPBF Fe-16Mn-0.7C for Bioabsorbable Stent Applications
Author(s) Maria Laura Gatto, Paolo Mengucci, Marcello Cabibbo, Diego Mantovani, Carlo Paternoster
On-Site Speaker (Planned) Maria Laura Gatto
Abstract Scope Fe-Mn-C alloys have significant applications in developing temporary implants like bioabsorbable stents. Laser powder bed fusion, a promising additive-manufacturing technique, allows tailoring the microstructure by adjusting laser process parameters, expected to improve the degradation rate and mechanical properties of Fe-Mn alloys. In this study, we produced Fe-16Mn-0.7C bulk samples by varying laser power (50÷70 W) and scanning speed (700÷1000 mm/s), while maintaining a constant volumetric energy density (VED) of 90 J/mm³, to understand the effect of printing parameters on the alloy's performances. Fully austenitic microstructure and mechanical properties (microhardness approximately of 300 HV) appear comparable among the different samples. However, the defect analysis via X-ray micro-computed tomography identified an operational window for producing fully dense Fe-16Mn-0.7C bulk samples using LPBF. This operational window resulted in laser parameters much lower than those reported in the literature. Ongoing static and potentiodynamic polarization tests are being conducted to validate the obtained results further.
Proceedings Inclusion? Planned:
Keywords Biomaterials, Additive Manufacturing, Characterization

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Plasma-3D Print Duo Platform for Reliable Materio-Biological Screening In Vitro
Advancing Dental Implant Technologies: Characterizing Ti-Cu Alloys Using Core/Shell Structures for Enhanced Mechanical Properties and Corrosion Resistance
An Overview of the Microstructural, Physical, Mechanical, and Tribological Performance of Beta-Type titanium Alloys for Total Hip Replacement
Biocompatibility and Biocorrosion Behavior of Resoloy for Absorbable Vascular Implants
Biodegradable Gel Electrolyte for Bioresorbable and Implantable Biomedical Devices
Biofunctionalization of the Ti-25Ta-xNb Alloy System
Biomimetic Collagen-Based 3D Printed Poly (Glycerol Sebacate) Composite Scaffold to Enhance Cartilage Defect Repair
Design of Bio-High Entropy Alloys with Suppressed Elemental Segregation for Laser Powder Bed Fusion Process
Design, Processing, and Evaluation of Ti-Containing High Entropy Alloy for Bioimplants Applications
Development and Characterization of a Low-Cost High-Entropy Alloy for Potential Application in the Biomedical Field as Bone Fixation Devices
Enhancing IoMT with Biocompatible Triboelectric Nanogenerators for Sustainable Medical Device Powering
Enhancing Structural Efficiency Through Design Tactics for Biomimetic Nested Cylindrical Frameworks
From Corrosion to Mechanics: Evaluating Novel Magnesium Alloys for Biodegradable Wire Applications
Functionally Gradient Nitinol Structure with Pure Titanium Layers and Hydroxyapatite Over-Coating for Orthopedic Implant Applications
High Throughput Exploration of Mo-Ag Alloys for Antibacterial Coatings on Medical Implants
In-Vitro Comparative Study of Composite Coatings for Magnesium-Based Bone Implants
In-Vitro Response to Bioinspired Helically Coiled Electrospun Fibers for Cardiac Patch Application
Influence of Forging Temperature on Microstructure and Texture Evolution and Its Implication on Mechanical, Corrosion, Antibacterial and In Vivo Biocompatibility of Mg-Zr-Sr-Ce Alloy
Influence of Laser Power and Scanning Speed on Performances of LPBF Fe-16Mn-0.7C for Bioabsorbable Stent Applications
Innovative Biodegradable Zn Alloys Produced by Rapid Solidification
Innovative Bone Implants: Drawing Inspiration from Marine Sponges for Next-Gen Solutions
Looking Beneath the Surface: an Ex Vivo Study of Dental Composite Resin Performance in Extracted Human Teeth
Low-Percentage Copper Doping To Optimize The Antimicrobial Properties Of Fluorapatite For Bone Scaffold Applications
Machine Learning-Driven Magnesium Alloy Design for Biomedical Implants Through Process Optimization
Mechanical Testing of Implantable Neuromodulation Components and the Open Source Community
Multifunctional Cobalt and Cerium Co-Doped 58S Bioactive Glass Nanoparticles with Elevated Angiogenic, Antibacterial, and Mechanical Properties
Novel Bio-TWIP Ti and Zr Alloys for Implants: Alloy Design Strategy, Mechanical Properties and Deformation Mechanisms
Novel Surface Treatment of Ti-containing Multiprincipal Element Alloys for Orthopedic Implants
Process Optimization and Biocompatibility of PEEK-HA-Carbon Composites
Production of Tantalum Nitride by Reactive Powder Bed Fusion for Bone Tissue Engineering Applications
Structural Properties of Ti-xNb Alloys for Biomedical Applications
Synthesis and Corrosion Behavior of Nitinol for Biomedical Applications Produced by Mechanical Alloying Method
Tribo-Corrosion Properties of Beta-Type Ti-Nb-Ga Alloys for Antibacterial Implant Applications
Unraveling Fracture Growth in 3D Printed Structures Mimicking Spicules via Computer Tomography (CT) Examination

Questions about ProgramMaster? Contact programming@programmaster.org