About this Abstract |
Meeting |
Materials Science & Technology 2020
|
Symposium
|
Advances in Synthesis and Integration Methods for Enhanced Properties, and Applications in Emerging Nanomaterials
|
Presentation Title |
Low-reflectivity Carbon Nanotube Coatings for Space Applications |
Author(s) |
Dan Wang, Peter Fuqua, Amber Hennessy, Alan Hopkins, Timothy Hall, Stephen Snyder, Maria Inman, Jennings Taylor |
On-Site Speaker (Planned) |
Dan Wang |
Abstract Scope |
Space observatory missions requires the development of low-reflectivity surfaces for space-borne instruments, such as seeker telescopes, optical sensors, etc., to minimize stray and reflected light across the visible and infrared wavebands for facilitating the direct exoplanet detection and characterization. The excellent optical absorption performance and light weight of carbon nanotubes (CNTs) make them as ideal coating materials for obtaining low reflectivity surfaces. In this presentation, we will discuss the feasibility of a low-cost, efficient and scalable manufacturing process for the deposition of durable, low reflectivity carbon nanotube black coatings based on the use of pulse and pulse reverse electrophoretic deposition technology. The low-reflectivity CNT coatings have been successfully deposited on various surfaces, including flat, bent, and sharp substrates. The CNT coatings show the reflectance of 0.4% ~ 0.8% across visible to near infrared (NIR) wavebands. |