ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments V
Presentation Title Investigation of Helium Bubble Formation at Tungsten-Dispersoid Interfaces in Dispersion-Strengthened Tungsten Alloys
Author(s) Ashrakat Saefan, Levko Higgins, Yongqiang Wang, Jonathan Poplawsky, Xing Wang
On-Site Speaker (Planned) Ashrakat Saefan
Abstract Scope Tungsten (W) is a promising candidate for plasma-facing materials in fusion reactors. However, it suffers from embrittlement due to recrystallization at high temperatures and ductile-to-brittle transition at low temperatures. Adding second-phase dispersoids has been shown to improve the material thermomechanical properties. Bubble formation due to high-fluence helium (He) ion irradiation is a unique challenge for plasma-facing materials in tokamak divertors. Here, we investigated the bubble formation in dispersoid-strengthened tungsten (DS-W) irradiated by 200 KeV He+ to the fluence of 4.5×1017 cm-2 at 850 °C. Transmission electron microscopy (TEM) analysis showed that the W-dispersoid interfaces generally suppress the He bubble formation, except in regions of W-dispersoid element intermixing. Both TEM and atom probe tomography analyses suggested that the intermixing may result in the formation of new phases that potentially enhance vacancy migration and bubble growth locally. The results will guide the design of DS-W with high tolerance to He ion irradiation.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advanced Characterization Capabilities of Nuclear Materials via NSUF
Advanced In-Situ Strain Mapping for Zr Oxidation by 4D-SPED
An In-Situ Transmission Electron Microscopy Study on the Synergistic Effects of Heating and Biasing of AlGaN/GaN High Electron Mobility Transistors
Atomic-Scale Hidden Point-Defect Complexes Induce Ultrahigh Irradiation Hardening in BCC Metals
Characterization of Aluminum Under Shock: Defects, Grain Orientation, and Phase Stability
Characterization of Radiation Damage in Nanocrystalline Ni- and Fe-Based Oxide Dispersion-Strengthened Alloys
Deciphering and Visualizing Helium Accumulation and Dynamics in Materials via In-Situ Characterization
Deployment and Testing of a Fiber-Based Instrument for In-Reactor Thermal Property Measurements at MIT Research Reactor
Determination of Molten Salt Thermal Conductivity Using Laser Flash Technique
Dynamics of Radiation Defect Accumulation in Non-Metallic Materials
Formation and Recover of Dislocations Under Deformation and/or Irradiation of Elemental Tantalum, a Step Toward Understanding Complex BCC Alloys.
Impact of Amorphous Pockets on Displacement Damage Evolution in Crystalline Silicon
Influence of Defects Length-Scale on Nuclear Graphite Properties
Interactions Between Radiation-Induced Defects and Shock in Al 1100
Investigation of Helium Bubble Formation at Tungsten-Dispersoid Interfaces in Dispersion-Strengthened Tungsten Alloys
L-1: Application of Laboratory-Based Photoelectron Spectroscopy with Hard and Soft X-Rays to Nuclear Forensics Characterization of Uranium Dioxide Fuel
L-2: Effect of Swift Heavy Ion Irradiation on Silicon Carbide
Localized Crystallization of Zr Following Heavy Ion Irradiation of HfNbTaZr MPEA
Machine Learning and Molecular Dynamics-Coupled X-Ray Absorption Spectroscopy for Disordered Multicomponent Systems
Microstructural and Chemical Evolution Studies of U-10Zr Metallic Fuel and HT9 Cladding from Fast Flux Test Facility
Microstructural Evolution in 316L Stainless Steel Under Lead-Bismuth Eutectic Corrosion
Nanoscale Redistribution of Lithium in Neutron Irradiated LiAlO2
Neutron-Induced Reversible Nanostructuring of GeSe2
Quantitative Phase Characterization of Nuclear Cements and Concretes Using Non-Destructive 3D Automated Mineralogy and Enhanced Deep-Learning Reconstruction via X-ray Microscopy
Real-time Neutron Diffraction to Support Interpretation of DSC Results on Zr-2.5Nb for Reactor Pressure Tubes
Strong Dependence of 2D Material Radiation Tolerance on the Composition of the 2D Material and Its Surrounding Environment
Structural Characterization of Ultra-High Temperature Ceramics in Three Dimensions for Statistical and Physics-Based Modeling
Superimposed Effects of Texture and Grain Shape Anisotropy on Biaxial Creep Behavior of Nb-Modified Zircaloy-4 Cladding
Synthesis and Irradiation of Uranium Carbide and Nitride for TRISO Development
Thermophysical Characterisation of Zirconium-Based Nuclear Materials
Tungsten-Based WTaVCr Refractory High Entropy Alloys for Fusion Energy Applications
Understanding Irradiation Assisted Hydrogen Embrittlement Using In Situ Coherent X-Ray Imaging
Understanding the Mechanism of Fission Gas Re-Solution and Blistering in UMo Fuel via Atomistic Modelling
Understanding the Surface and Near Surface via Nanomechanical Mapping

Questions about ProgramMaster? Contact programming@programmaster.org