About this Abstract |
Meeting |
2020 TMS Annual Meeting & Exhibition
|
Symposium
|
Characterization: Structural Descriptors, Data-Intensive Techniques, and Uncertainty Quantification
|
Presentation Title |
Application of Machine Learning to Microstructure Quantification and Understanding |
Author(s) |
Ryan Noraas, Greg Levan, Asa Fry, Iuliana Cernatescu |
On-Site Speaker (Planned) |
Ryan Noraas |
Abstract Scope |
Microstructure quantification typically involves measurement of features in 2D or 3D to establish averages and in certain cases a distribution of feature parameters. Limits in dynamic properties of materials e.g. fatigue and fracture are often related to the tails of microstructural feature distributions and assemblages. While it is important to understand structure – property relationships relative to physical features within a microstructure, not all critical features can be determined a priori or reduced to single point metrics like average grain size. This requires new approaches to guide characterization and understanding of microstructures. The use of machine learning tools is opening up new approaches to statistically quantify microstructures and to identify controlling features within microstructures. Examples of these new approaches for the development and control of new and legacy materials will be presented. |
Proceedings Inclusion? |
Planned: Supplemental Proceedings volume |