ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Composition–Processing–Microstructure-Property Relationships of Titanium Alloys
Presentation Title G-4: Study of Microstructure of Titanium Alloys and Its Relation to Mechanical Properties of Alloys for Aerospace Industry
Author(s) Borys Petrovich Sereda, Yaroslav Pylypchuk, Dmytro Kruhliak
On-Site Speaker (Planned) Dmytro Kruhliak
Abstract Scope Titanium alloys were processed using functionally active charges. The results of the study of heat resistance of protective coatings showed that the thickness of the oxidized layer is 10-20 microns. The best results of heat resistance showed titanium coatings alloyed with nickel. The greatest resistance to high-temperature oxidation is characterized by (α+β)-alloy. It is established that with the increase of processing temperature residual stresses increase (at T= 950º C σ =130 MPa, at T= 1050º C σ =170 MPa). The hardness of the surface layer was 750 NV, and the hardness of the inner layers of the VT-20 alloy was 1.8 GPa. Additional alloying with aluminum leads to the formation of a protective film of Al2O3, which prevents the diffusion activity of oxygen.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Study on High-Temperature Deformation Behavior, Mechanism and Microstructure Evolution of Ti-900 Alloy for Gas Turbine Blade Application
An AM Defect Model for Fast-Acting Probabilistic Prediction of Defects in Laser Powder Bed Fusion and Its Application to Ti-6Al-4V
ATI High Temperature Titanium Alloy Development for Aerospace Applications
ATI Titan 27® : Exploiting c+a Slip to Improve Performance for Aerospace
Cross-Slips in a Near-α Titanium Alloy Made by Additive Manufacturing
Deformation and Fracture at Basal Twist Grain Boundaries In Ti-6Al-4V
G-1: Effects of Temperature on the Deformation Behavior and Microstructural Evolution during the Hot Compression Test of Ti-6Al-2V-1Fe-1Cr Alloy
G-2: Experimental Investigations on Thermomechanical Fatigue Behavior in Near Alpha Titanium Alloy
G-3: Heterogeneous Nano-Mechanical Response of Bimodal Ti-6Al-4V Alloy
G-4: Study of Microstructure of Titanium Alloys and Its Relation to Mechanical Properties of Alloys for Aerospace Industry
Influence of Zr and O on the Evolution of Microstructural Features in High γ-Phase Ti-Al-Zr Alloys
Investigating Cold Dwell Fatigue Failure in Dual-Phase Ti Alloys: The Perspective of Hard-Soft Grain Interactions
Metastable and Stress-Induced Transformations in Additively Processed Ti-10V-2Fe-3Al
Microstructure, Mechanical, and Electrochemical Properties of Additively Manufactured Ti-5Al-5V-5Mo-3Cr (wt.%)
Novel Ti-Ta-Zr-Mo Alloys Utilizing Martensite-Driven TRIP/TWIP Mechanisms for Cardiovascular Stent Applications
Surface Engineering Ti Alloys and Stress Impacts on Recrystallization
Tailoring Strength and Toughness of a New Titanium Alloy, ATI Titan 23™
Titanium Boron Nitride Nanotubes (Ti-BNNT) Metal Matrix Composite Processed by SPS: Microstructure, Mechanical and Tribological Characteristics
Tuning Alpha Microstructures in Beta Titanium Alloys

Questions about ProgramMaster? Contact programming@programmaster.org