ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Advances in Biomaterials for 3D Printing of Scaffolds and Tissues
Presentation Title 3D Printing and Growing Fungal Tissue in Ambient Environment and Properties
Author(s) Hortense Le Ferrand
On-Site Speaker (Planned) Hortense Le Ferrand
Abstract Scope Fungal-based materials are biodegradable materials made of fungal cells. Such materials have already promising applications as sustainable packaging, for green leather, or for sound absorption. Being able to 3D print them would allow more design complexity and tailoring of the properties. However, one challenge is the stringent sterilization requirements. In this study, we fabricate fungal materials using direct ink writing in ambient conditions. An agar gel was chosen as the printing medium and supplemented with coffee grounds, malt and peptone to double the growth rate and density of the mycelium by Pleurotus ostreatus. The growth of the mycelium embedded in the ink was studied over 28 days and demonstrated that the mycelium was efficient in reinforcing the printed part, doubling its compressive modulus up to 60 kPa. Furthermore, the objects created by this ink exhibit self-healing and can be used for gluing components together.
Proceedings Inclusion? Planned:
Keywords Additive Manufacturing, Biomaterials, Sustainability

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Printing and Growing Fungal Tissue in Ambient Environment and Properties
3D Printing of Multiscale Human Tissue and Organ Equivalents
Bioabsorbable PLDL/Mg-wire Composites Manufactured by Fused Filament Fabrication for Tissue Engineering
Biodegradable Polymers for 3D Printing of Tissue Engineering Scaffolds: Challenges and Future Directions
Bioink Formulations for 3D Printing of Tissue Scaffolds: A Review of Materials and Printability
Design and Optimization of a 3D-printed Bioreactor for Long-term Ex-vivo Bone Tissue Culture
Effects of Post-printing Cell Distribution on Cell Viability and Proliferation in Inkjet-based Bioprinting of Vascular Structures
Engineering Polymeric BioInks for 3D Printing
Filaments Made of Magnesium-incorporated Polymer for Potential Use in Bone Implants
Graphene and MXene Nanomaterial Bioinks for Improvement of 3D Bioprinted Tissue Engineering
H-2: 3D Printable Bioscaffolds for Musculoskeletal Tissue Engineering using Ti_3 C_2 MXene Nanoparticles to Enhance Conductivity and Improve Cell Viability
Improving Predictability of Additively Manufactured Ti-6Al-4V Lattices for Customised Orthopaedic Devices
Improving Structural Integrity of a Bioinspired Structures through 3D Printing for Advancing Bone Tissue Engineering
Migration Behavior of Invasive and Non-invasive Breast Cancer Cells on a Graded Micropillar Surface
Structure-property Relationships in Solvent-cast 3D-printed Polymeric Biomaterials
The Influence of Iso-value on 3D-printed Sheet TPMS Ti6Al4V Scaffolds’ Mechanical Responses

Questions about ProgramMaster? Contact programming@programmaster.org