ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Melt Processing, Casting and Recycling
Presentation Title Removal efficiencies of Hydrogen and inclusions in a combined filter with de-gassing and CFF
Author(s) Terje Haugen, Arild Hakonsen
On-Site Speaker (Planned) Terje Haugen
Abstract Scope In-line removal of dissolved Hydrogen and inclusions is today standard practice in aluminium DC-casting lines. The conventional setup is a de-gasser followed by a CFF filter-box for inclusion removal. Sometimes more physical filters for inclusion removal may be used downstream the CFF filter. This setup requires a lot of footprint (space) and represents a high cost for the casthouse. To reduce the required footprint, and to reduce the capex and opex of melt treatment a multi-filter is developed. In this filter de-gassing is done in the same unit as the CFF-plates are mounted. In this paper the measured removal efficiencies for Hydrogen and inclusion are shown for different configurations. A reduction of metal height in the de-gassing chamber from 950 to 600mm did not reduce the efficiency of Hydrogen removal. Co-current flow gave lower removal efficiency of Hydrogen compared to counter-current flow.
Proceedings Inclusion? Planned: Light Metals
Keywords Extraction and Processing,

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

4D synchrotron X-ray tomographic operando study and multiphysics modelling of the multiphase coupled growth in a recycled Al alloy during solidification under pulse magnetic fields
Achieving Grain Refinement by Recycling Magnesium Alloy Chips via Stir Casting
Application of digital twins for complete DC-casting lines
BATSCAN – A Breakthrough for Industrial Inclusion Measurement in Aluminium Casthouses
Development of Numerical Model of Plasma Burner for Primary Aluminium Casthouses
Fir Tree Studies on an EN AW-1200 alloy
High Emissivity Refractory for Aluminum Melting Furnace
How Companies Keep Their Workers Cool While Wearing Aluminized Safety Clothing
Investigation of Al6(Fe, Mn) Intermetallics Formation on AA8006 Aluminum Alloy produced by Twin-Roll Casting at Different Solidification Conditions
Investigation of the Effect of Lacquered and Delacquered Scrap on Casting Impurities for Recycling Efficiency
Kinetics of dissolved hydrogen from water vapour into and out of molten aluminium
Liquid composition analysis of wrought aluminium alloys using Laser Induced Breakdown Spectroscopy (LIBS) for industrial melting/holding furnace applications
Loading solid and liquid charges into melting furnaces is a critical step in the melting process, impacting melt efficiency in terms of cycle time and energy consumption. It also affects refractory integrity, burner efficiency, and liquid metal security. Determining the optimal timing for loading stages is contentious and often relies on standard practices within the cast-shop or other deterministic rules. Novamet's SmartMelt technology was developed to enhance the efficiency of aluminum melters by integrating a rapid and precise digital twin of the furnace. Utilizing real-time data acquisition, SmartMelt predicts the ideal loading times for both liquid and solid charges based on the specific scrap type. This optimization has demonstrated a potential efficiency improvement of up to 10%. Furthermore, it provides warnings for potential overheating incidents when thermocouples are not correctly inserted. Any delays or deviations from these recommendations are monitored and logged in a dedicated database, ensuring comprehensive process control and optimization.
Modeling, Simulation and Validation of Cold Hearth Continuous Casting of Titanium Alloys
Nano-treating Enhanced Ductility and Fluidity of Zamak 3
New Innovations in Fiber Optic Sensing for Metalmaking Process Control
Nucleation and growth of Al-Fe-Si intermetallics in model aluminium alloys: a dynamic in situ observation
On the influence of oxide layer formation and alloying in the Mg vapor pressure for ternary dilute Al-Mg alloys
Oxidation of aluminium melts in dry and moist atmospheres
Recycling if Ti and Ti6Al4V chips by consolidation with severe plastic deformation
Removal efficiencies of Hydrogen and inclusions in a combined filter with de-gassing and CFF
Removal of metallic impurities from aluminum alloy using gravity sedimentation technique
Removal of Zn and other tramp elements from molten Al by vacuum refining
Review of Recent Force 3 Molten Metal Explosions and Their Causes
Sedimentation Of Inclusions In Melts Of Aerospace Structural Aluminum Alloy Castings: A Sustainable Approach
Smart sensors for additive manufacturing and aluminum foundry 4.0 initiatives
SmartBurner: Advanced Monitoring System to Enhance Gas Burner Performance
The Effect of Nucleating Particle Agglomerates on Grain Refiner Efficiency of 7xxx Aluminium Alloys
The Relationship Between Casting Thickness and Surface Quality of 8079 Alloy Foils in Twin-Roll Casting
ThermaSiC coating for applications in contact with molten aluminum
Tracking Primary Al3Ti and Al3Zr Phase Formation in Liquid Aluminum Alloys Using LIBS
Ultra-short process for producing pure nickel casting strip

Questions about ProgramMaster? Contact programming@programmaster.org