ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium Additive Manufacturing Modeling, Simulation, and Machine Learning: Microstructure, Mechanics, and Process
Presentation Title Use of Machine Learning to Identify Process-Structure-Property Relationships in PBF-LB AlSi10Mg
Author(s) Qixiang Luo, Allison Michelle Beese
On-Site Speaker (Planned) Qixiang Luo
Abstract Scope In this study, the multivariate relationships among processing conditions, microstructure, and mechanical properties of AlSi10Mg fabricated by laser powder bed fusion were identified with a combination of experimental investigation and machine learning. Experimentally, a wide range of processing parameter combinations were designed to probe a range of microstructures and defect structures in the PBF-LB AlSi10Mg. The pore structures were assessed using X-ray computed tomography, grain/sub-grain characteristics using SEM/EBSD, and mechanical properties using uniaxial tension and Vickers microhardness measurements. Machine learning was used to define the process-structure-property (PSP) relationships, by predicting each PSP feature-feature link, alongside feature importance analysis that quantified the importance of each PSP feature to each other PSP feature. This data-driven framework provides quantitative information on the complex multivariate PSP relationships, providing insight to the ICME community by suggesting the key feature that must be modeled or captured for the prediction of desired material microstructures or properties.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3-Dimensional Microstructure Characterization of Laser Powder Bed Fusion IN625 and IN718
3D Deep Learning for Porosity Analysis in Additive Manufacturing
A-1: 3D Printed Ceramics for Solid-state Battery Components
A-22: Enhancing Material Properties in Multi-Material 3D Printing: Exploring In-Situ Mixing and Material Gradation
A-23: Mechanical Ventilator Prototype Using 3D Printed Components
A-2: Deep Learning Assisted Material Structure Property Linkage of 3D Printed AlSi10Mg Alloy
A-3: Density Functional Theory Based Methods for Predicting Interfacial Strengths in Thermal Barrier Coatings with MXene Using Spark Plasma Sintering
A-4: Developing Virtual Reality Models to Simulate Additive Manufacturing Process
A-5: Extrusion Based 3D Printing of Silicon Carbide
A-6: Inkjet 3D Printing of Biodegradable Materials
A-7: Modeling Laser Heating Phenomenon in Refractory Metal Powder Bed Fusion Process
A-8: Simulation of Shell Thickness and Inclusions Trajectory in Casting Mold of Round Steel Billet Continuous Casting
A Molecular Dynamics Study on the Micro Cold Spray of Zinc Oxide Films
A Unified Treatment of Alloy Dependent Material Properties and Process Parameters for Accurate Solidification Simulations for AM Based on CALPHAD
Analyzing and Predicting Surface Roughness in Laser Powder Bend Fusion
Better Understanding of Cracking Phenomena in High-Strength Superalloys through Multiphysics Modeling in Additive Manufacturing
Computational and Experimental Study of Up-/Down-surface Characteristics of Sloped Samples in L-PBF Process
Effect of Size, Location, and Aspect Ratio of Pores on Ductility of PBF-LB Ti-6Al-4V: Experiments and Simulations
Examining the Effect of an Oxide Layer on the Deposition of Tantalum Films via Micro-Cold Spray
Finite Element Simulation Based on Constitutive Model of Cellular-structured Metals Produced by Additive Manufacturing
Gas Atomization of Mg-Zn-Ca-Mn Alloy Powder for Additive Manufacturing
Mechanical Properties of Truss-based Nanolattices: A Molecular Dynamics Study
Microstructure Evolution Simulation of Inconel 718 Superalloy during Laser Powder Bed Fusion (LPBF) Process
Modeling In-Situ Phase Transformation in Inconel 718 and EH36: A Study Using Phase Field and Phase Fraction Models
Multi-Model Monte Carlo Simulations of Mechanical Behavior of Additively Manufactured Metals
Open-source Numerical Simulations of Melt Pool Physics in Laser Powder Bed Fusion Processes
Physics-constrained, Inverse Design of High-temperature Strength Printable Aluminum Alloys with Low Cost and CO2 Emissions for High Demand Industries
Physics Informed Reduced Order Model for Directed Energy Deposition Simulations in MALAMUTE
Predicting Material Properties in Additive Manufacturing Using Acoustic Signatures and Machine Learning
Quantification of Carbide Pickup and Quality Control of SS 316L Manufactured via Binder Jet Printing
Quantification of Spatter Counts and Trajectories in Laser Powder Bed Fusion using Machine Learning Analysis of High Speed Imaging
Simulating the 3D Printing Process of Hydroxyapatite Powders
Simulation of Anisotropic Mechanical Behavior of Additively Manufactured Ti-6Al-4V Wall Structures using VPSC
The Effect of Disorder and Constitutive Material on the Mechanical Properties of Bioinspired Honeycombs
Use of Machine Learning to Identify Process-Structure-Property Relationships in PBF-LB AlSi10Mg
Utilizing Cellular Automata to Resolve Process Parameter to Microstructure Correlations in LPBF Additively Manufactured Parts

Questions about ProgramMaster? Contact programming@programmaster.org