About this Abstract |
Meeting |
2022 TMS Annual Meeting & Exhibition
|
Symposium
|
Functional Nanomaterials: Functional Low-Dimensional (0D, 1D, 2D) Materials 2022
|
Presentation Title |
Structural Evolution and Electrical Conductivity of Polymer Derived Ceramics |
Author(s) |
Kathy Lu, Sanjay Kumar |
On-Site Speaker (Planned) |
Kathy Lu |
Abstract Scope |
Polymer derived materials are well recognized for their high temperature stability and processing flexibility. It is highly desirable that new functional properties are introduced into polymer derived materials. In this study, flash pyrolysis and conventional pyrolysis are conducted to produce polymer derived SiOC nanocomposites. MXene Ti3C2 has been exfoliated and functionalized to prepare Ti3C2-SiOC composites in order to enable high temperature electrical conductivity. The electrical transport of the synthesized ceramics follows an amorphous semiconductor mechanism. The Ti3C2 phase is preserved up to 1000°C in the SiOC matrix, facilitates carbon cluster growth, enhances the SiOC matrix electrical conductivity. The conductivity in the pure SiOC matrix occurs via both free carbon and the SiOC matrix while in the Ti3C2-SiOC samples Ti3C2 enables single percolation pathway. This work is the first to introduce Ti3C2 into the SiOC matrix. These new systems demonstrate important application potentials from room temperature to as high as 1000°C. |
Proceedings Inclusion? |
Planned: |
Keywords |
Ceramics, Composites, High-Temperature Materials |