ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Computational Materials for Qualification and Certification
Presentation Title Materials Data for Validation and Verification of Mechanical Performance: Outcomes and Future Perspectives from the AM Benchmark Series
Author(s) Orion L. Kafka, Jake Benzing, Newell Moser, Nicholas Derimow, Alec Saville, Li-Anne Liew, Jordan Weaver, Ross Rentz, Nik Hrabe
On-Site Speaker (Planned) Orion L. Kafka
Abstract Scope This talk discusses efforts to the include mechanical testing data in Additive Manufacturing Benchmark (AM Bench) challenges and datasets, including data currently published from 2022 and the upcoming 2025 installment. AM Bench broadly is an ongoing multi-institutional effort led by the National Institute of Standards and Technology to provide high veracity data to modelers and the broader community, including a modeling challenge series. AM Bench 2022 was the first AM Bench to include significant mechanical testing data: tensile testing of two material conditions across five tensile orientations, small-scale tensile testing to probe the grain-scale role in strain localization/fracture, and compression testing under varying conditions. Details of the public data sets, papers, and lessons learned will be discussed. In addition, a preview of the mechanical property related challenges planned for AM Bench 2025 will be provided, which includes different materials and mechanical performance metrics as compared to AM Bench 2022.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Computational Multiscale Approach for Predicting Macroscale Elastic Properties and Failure Initiation in Phenolic Impregnated Carbon Ablator
A Framework for Assessing Simulation Maturity
Additive Manufacturing Porosity Estimation Using Multiple Nondestructive Evaluation Techniques
America Makes Efforts in Advanced Qualification Methods for AM
Assessing the Impact of Melt Pool Geometry Variability on Lack-of-Fusion Porosity and Fatigue Life in Powder Bed Fusion - Laser Beam Ti-6Al-4V
Computational Framework for Spatially-Dependent Melt Pool and Microstructure Simulations of Additively Manufactured Material
Computational Investigation on the Combined Effect of Pore Attributes on Strain Concentrators in Metal Additively Manufactured Materials
Computational Materials for Qualification and Certification Steering Group and Community Vision Roadmap
Computational Tools for Advancing Materials Maturity in Additive Manufacturing
Convolution-Based Numerical Solutions of Transient Temperature Fields during Powder Bed Fusion Additive Manufacturing: Theory, Accuracy, and Computational Cost
Correlations of Additive Manufacturing Model-Based Process Metrics With Spatter-Induced Porosity in the Powder Bed Fusion-Laser Beam/Metallic Process
Data-Driven Process Uncertainty Analysis of Stochastic Lack-of-Fusion in Laser Powder Bed Fusion
Development of Computational Materials Workflows for Additively Manufactured Metallic Materials to Enable Accelerated Prediction of Fatigue Performance
Durability and Damage Tolerance of Powder-Bed Fusion Ti-6Al-4V: Current Results and Modeling Needs
Efficient Sensitivity and Uncertainty Analysis of a Laser Powder Bed Fusion Thermal Model Built Using HYPAD-FEM
Enabling Rapid Aerospace Component Qualification and Certification: Integrated Model-Based Material Definitions in Additive Manufacturing
Fast, Cheap & In Control: Application of Surrogate Models to Explore Microstructure-Properties Relationships for AM-Based Materials
GO-MELT: GPU-Optimized Multilevel Execution of LPBF Thermal Simulations
Industry's Vision for the Use of Computational Materials Tools in Qualification and Certification
Lessons Learned Calibration and Validation of Process Models for Laser Powder Bed Fusion Additive Manufacturing
Machine Learning Enabled Parametrically Upscaled Constitutive Models for Fatigue Simulations: A Data-Driven Multiscale Modeling Approach
Materials Data for Validation and Verification of Mechanical Performance: Outcomes and Future Perspectives from the AM Benchmark Series
Physics-Based Modeling of Ti-6Al-4V Phase Transformations for PBF-LB Temperature Histories
Process sensitivity of Laser Powder Bed Fusion of IN718 to Composition Variation
Quantification of Microstructure-Induced Uncertainty in Fatigue Nucleation in Polycrystalline Materials
Quantifying Microstructure Evolution of LPBF Ni-Alloy Under High Temperatures Exposure Through Computer Vision
QUASAR – Assessment of the State of the Art and Gaps for AM of Fracture Critical Components
Review of Past and Future Impacts of the Additive Manufacturing Benchmark Test Series (AM Bench)
Scientific AI for Automated Validation and Certification
Towards a Digital Twin for Qualification and Certification of Metals Additive Manufacturing
Towards a Probabilitic Model for the Assessment of Gas Turbine Components
Transitioning from Basic Research to Industrial Applications for Metal AM Components
Uncertainty Quantification and Sensitivity Analysis in Process-Structure-Property Simulations for Laser Powder Bed Fusion Additive Manufacturing
Uncertainty Quantification in Process-Structure-Property Dynamics of IN718
Using Unsupervised Learning to Cluster Fatigue Life Based on Ti64 Fatigue Fracture Surface Characteristics

Questions about ProgramMaster? Contact programming@programmaster.org