About this Abstract | 
  
   
    | Meeting | 
    TMS Specialty Congress 2025
       | 
  
   
    | Symposium 
       | 
    8th World Congress on Integrated Computational Materials Engineering (ICME 2025)
       | 
  
   
    | Presentation Title | 
    An Integrated Experimental and Computational Study on the Role of Material Interfaces in Mediating Plastic Flow in Amorphous/Crystalline Composites | 
  
   
    | Author(s) | 
    Ashraf  Bastawros, Amir  Abdelmawla, Liming  Xiong | 
  
   
    | On-Site Speaker (Planned) | 
    Ashraf  Bastawros | 
  
   
    | Abstract Scope | 
    
In this work, we study the deformation behavior in amorphous/crystalline metallic composites (A/C-MCs) through nanoindentation experiments and molecular dynamic (MD) simulations. The atomic deformation processes in both crystalline (C-) and amorphous (A-) phases near the amorphous-crystalline interface (ACI) are investigated and correlated with the material’s overall constitutive behavior at the microscale. Our major findings are (i) the ACIs enable a co-deformation of the A- and C-phases through “stiffening” the soft phases but “softening” the stiff phases in A/C-MCs through different micro-mechanisms; (ii) there exists an ACI-induced transition zone with a thickness of ~ 10 nm; (iii) the strong coupling between shear transformation zones (STZs) and dislocations can be quantified through carefully designed indentation experiments and simulations; and (iv) the nanoscale MD-simulation-predicted mechanisms can be mapped to the “pop-in” or “excursion” events on the force–indentation depth curves extracted from microscale experiments, although there is a length-scale gap in between. | 
  
   
    | Proceedings Inclusion? | 
    Undecided |