ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Materials Informatics to Accelerate Nuclear Materials Investigation
Presentation Title Machine Learning for Predicting Reactor Pressure Vessel Embrittlement
Author(s) Dane Morgan, Ryan Jacobs, G. Robert Odette, Takuya Yamamoto
On-Site Speaker (Planned) Dane Morgan
Abstract Scope In this talk we discuss our recent work on predicting Reactor Pressure Vessel (RPV) embrittlement using machine learning methods. We have integrated yield stress and ductile to brittle transition temperature shift data from across multiple databases (including PLOTTER-22 surveillance, PLOTTER-15 MTR, IVAR, BR2, ATR2, and RADAMO) to obtain over 4500 data points and develop a model applicable to a very wide range of alloys and radiation conditions. We have utilized a flexible ensemble neural network approach combined with calibrated uncertainties to obtain accurate predictions and error estimates. When compared to hand-tuned and physics-based approaches we demonstrate that the model is numerically as good or better on average. However, the model has orders of magnitude more fitting parameters and some potentially unphysical behavior that occurs in regions of poor training data sampling. We finish with a discussion of pros and cons of machine learning vs. more hand-tuned and physics-based approaches.
Proceedings Inclusion? Planned:
Keywords Machine Learning,

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerating Characterization of Radiation Driven Processes using Machine Learning Tools
Characterizing Microstructures in Aluminide Coatings Captured in SEM Image with Convolutional Neural Networks
Deep Neural Network for Porosity and Microstructure Analytics of a High Burnup U-10Zr Metallic Solid Fuel
Defect Evolution in Multi-principal Chemically Disordered Alloys from Multiscale Simulations
E-25: Feature Engineering for Construction of High-accuracy Thermal Conductivity Prediction Model for Uranium Compounds
E-26: Materials Genomics Search for Possible Helium-absorbing Nano-phases in Fusion Structural Materials and Experimental Validation
Emergent Molecular Structure and Dynamics of Tetrahedral Liquids Revealed by Neural Network Forcefield Simulations and Neutron Spin Echo Experiments
Few-shot Machine Learning for Automated Analysis of TEM Images of Nuclear Materials
Influence of Empirical Potentials on Data Quality in Computational Studies of Zr Alloys
Inverse Uncertainty Quantification of Dispersion Analysis Research Tool (DART) Parameters Necessary for the Calculation of Fission Gas Swelling in U-Mo Fuel
Machine Learning Enhanced Kinetic Monte Carlo Modeling of Molten Salt Corrosion of Ni-Cr Alloys
Machine Learning for Predicting Reactor Pressure Vessel Embrittlement
Materials Genomics Search for Helium-absorbing Nano-phases in Fusion Structural Materials
Modeling Cascade Damage in Tungsten Using Machine Learning SNAP Interatomic Potential: Electron-Phonon Interaction Model
Neural Networks of Defect Kinetics in Refractory Alloys
Optimizing Thermal Conductivity Prediction of Uranium Compounds using Balanced Multiclass Classification
Probing Radiation Induced Interface Metastability Using Deep Learning Object Detection
Putting Artificial Intelligence into Action to Quantify Radiation Effects in Materials
Quantitative Insight to Fission Gas Bubble Distribution and Lanthanide Movement in Irradiated Annular U-10Zr Metallic Fuel Using Deep Learning
Revealing the Story of Defects from Coupled Extreme Environments with Autoencoders and Dense Neural Networks
Scaling Ductility from Microscale to Bulk by Coupling Crystal Plasticity Simulations with 3D Convolutional Neural Networks
Scanning-TEM (STEM) 3D Tomography for Quantification of Radiation Damage in Neutron Irradiated 316L Stainless Steel
Synthetic Data Driven Materials Informatics Methods for Nuclear Materials Characterization
Utilizing Mechanistic Modeling and Uncertainty Analysis to Support Nuclear Fuel Qualification

Questions about ProgramMaster? Contact programming@programmaster.org