ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Advances in Materials and Systems for a Hydrogen Economy
Presentation Title Degradation of Spinel Refractories in Dry (Ar - 10% H2) and Humid Hydrogen (Ar - 10% H2-3% H2O) Environment
Author(s) Manoj K. Mahapatra, Jakia Sharmin Mim, Rajat Durgesh Ramteke, James Hemrick
On-Site Speaker (Planned) Manoj K. Mahapatra
Abstract Scope Refractory ceramics are exposed to hydrogen containing atmospheres for various sectors, ranging from DRI-technique for iron making, steel and cement clicker production to burners, seeking to significantly reduce greenhouse gas emission by using hydrogen containing fuels. The degradation of magnesium aluminate (MgAl2O4) and its potential alternative gahnite (ZnAl2O4) as chrome-free spinel refractory ceramics in humid (~3% H2O) and dry hydrogen (Ar-10% H2) has been studied in 1100°C - 1400°C temperature range. The stability of these materials has been investigated in terms of evaporation rate, changes in lattice parameters and microstructure, and structural integrity. Overall, MgAl2O4 exhibits better stability, in comparison with ZnAl2O4 in the studied conditions. Both the spinel refractories are more stable in humid hydrogen than in dry hydrogen atmosphere. Similar study has also been conducted for common refractory ceramics such as alumina and mullite. The plausible degradation mechanisms are discussed.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Adsorption and Dissociation of Hydrogen on Iron and Iron Oxide Surfaces Under Supercritical Conditions
Advanced Electrochemical Systems for Hydrogen Economy: Technology Status and Development Needs
Advances in Hydrogen Barrier Coatings – An Overview.
Analysis of Integrated Wind-Hydrogen Systems for Industrial Decarbonization
Application of Local Strain Theory for Predicting Notch Fatigue Testing in Hydrogen-Charged Austenitic Stainless Steel
Compatibility of Existing Natural Gas Pipeline Materials with Hydrogen
Computational Simulation of Hydrogen DRI (HDRI) Pellets Immersed in Molten Steel and Slag
Degradation of Spinel Refractories in Dry (Ar - 10% H2) and Humid Hydrogen (Ar - 10% H2-3% H2O) Environment
Dynamic Nano and Microscale Processes in Hydrogen Charged Metals and Alloys
Effect of Additives on Hydrogen Equilibrium Pressure and Absorption Rates in Yttrium Hydride
Effect of Chemically Heterogeneous Microstructure on Hydrogen Embrittlement in Martensitic Steel
Effects of Oxygen Impurities on Long-Term Gaseous Hydrogen Embrittlement of Structural Steels
Efficient Hydrogen Production from Recycled Aluminum and Seawater
Fatigue and Fracture of Structural Steels in Gaseous Hydrogen Environments
Ferritic Interconnect Materials in SOEC – Challenges and Degradation from Ambient Temperature to 900°C
Fundamental Atomistic Study of H-Defect Interactions to Predict H Segregation Energy Spectra
Hydrogen Embrittlement in Micro-Alloyed Ultra High Strength Press Hardening Steel (PHS)
Imaging the Nanoscale Hydrogen Distribution in an Austenitic Stainless Steel (347H) Using Atom Probe Tomography
Insights into Hydrogen Embrittlement of AA7075 Aluminum Alloy Fabricated by Additive Friction Stir Deposition
Insights into Hydrogen Separation from Simulations
Investigations in Hydrogen Ironmaking
Material Discovery and Design Principles of Perovskite Oxides for Reversible Solid Oxide Cells
Modeling and Experimental Studies of Hydrogen Effects on the Materials Used for Storage and Transport
Modeling and Valuation of Hydrogen Toward Multiple Energy Pathways and Grid Applications
Multi-Layer, Multi-Functional Thermal and Environmental Barrier Coatings for Heat Engines
Multiscale Simulations of Materials Degradation for Hydrogen Production and Storage
N-6: Effect of Cyclic Hydrogen Charging on Shot-Peening Steel with Surface Compressive Residual Stresses
Overview of U.S. DOE’s Reversible Solid Oxide Fuel Cell (R-SOFC) Program
Refractory Ceramic Interactions with Medium Temperature Hydrogen-Containing Atmospheres
The Less Discussed Impact of High Temperature (> 500 °C) Hydrogen Induced Degradation of Austenitic Ni- and Fe-Based Alloys
Understanding the Creep Properties of 347H Austenitic Stainless Steels under Hydrogen-Containing Environments
Unraveling the Influence of Hydrogen and Blended Gas on Polymer Performance in Infrastructure Systems
Zero-Electricity Electrolytic Reactor Produces Hydrogen and Syngas for Onsite Energy, Fuel, and Feedstocks

Questions about ProgramMaster? Contact programming@programmaster.org