ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Solid-State Transformations Under Complex Thermal Conditions
Presentation Title Predicting Emergence of Nanoscale Order in Surfaces Oxides Through Preferential Interactivity Parameter
Author(s) Andrew Martin, Martin Thuo
On-Site Speaker (Planned) Andrew Martin
Abstract Scope Diffusion and surface oxidation are critical, and necessary processes in metal alloy designs and use. Surface oxide provides unique opportunities to improve material properties or performance beyond bulk alterations. Surface oxidation is, however, often oversimplified into a classical diffusion process. Passivating oxide surfaces are also thought to be lacking in complexity or critical information. A closer look, however, shows inherent complexity with kinetics-driven competition between the elements in the process leading to redox-speciation across a very small (nm) thickness. Questions that remain to be answered for a comprehensive understanding of surface oxides are diverse and call for interdisciplinary approaches. By using thermodynamics-based Preferential Interactivity Parameter (PIP) alongside kinetic consideration, we show how complexity in these oxides can be predicted under different compositional, phase and thermal conditions allowing us to tailor these thin films.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Additive Manufacturing of Beta Titanium Alloys: Influence of Thermo-Kinetics on Solid State Precipitation (Invited)
Design and Function of a Nanocalorimetry Sensor for In-Situ TEM Imaging
Effect of Partial Transformation Cycling on Transformation Behaviour of a Binary Nickel-Based Alloy
In-Situ Heating in Transmission Electron Microscopy to Characterize Nuclear Fuel
Multi-Stimuli Integration in Alloy Design: A Shear-Assisted Processing Approach for High-Performance Nano-Composite Materials
Predicting Emergence of Nanoscale Order in Surfaces Oxides Through Preferential Interactivity Parameter
Thermal Fatigue of Sn-Based Solders in Heterogenous Integration in Packaging (HIP) by Time-Resolved X-Ray Microscopy
Towards Predictive Microstructural Design of Additively Manufactured Metals
Using the SEAQT Framework to Predict the Kinetics of Irradiating an FeCr Alloy

Questions about ProgramMaster? Contact programming@programmaster.org