ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Frontiers of Machine Learning on Materials Discovery
Presentation Title Reinforcement Learning for Materials Science: Algorithms, Challenges and Applications to Improve Understanding of System Dynamics
Author(s) Rama Krishnan Vasudevan
On-Site Speaker (Planned) Rama Krishnan Vasudevan
Abstract Scope Reinforcement learning (RL) has become increasingly used within computational materials science, however, the use of RL within core experimental realms is very limited. Here, I will review our work on utilizing RL in both simulations and experiments. We begin with a focus on the algorithmic developments, including load-balanced RL algorithms capable of running multiple agents to solve RL problems more efficiently, and their implementation on understanding and manipulating atomic scale structures in 2D materials and ferroelectrics, in simulated environments. Next, we will focus on more recent implementation of RL workflows within experimental setups for manipulating ferroelectric domain walls. Automated experiments capture data relevant to update a physics-informed dynamics model for state transitions, and RL agents can be trained on this model before being deployed on the instrument for autonomous manipulation of domain walls. Finally, we discuss the use of curiosity-driven RL towards improving the theory-experiment feedback loop in real-time.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Hierarchical Machine Learning Scheme to Identify Promising New Scintillators
abICS Framework for ab initio Statistical Thermodynamics of Complex Oxides Accelerated by Machine Learning
Accelerating Defect Predictions in Semiconductors Using Crystal Graphs
Accelerating Electron Microscopy and Experimentation through Acceptance of ML/AI
Autonomous Materials Synthesis System for Inorganic Thin Films Utilizing AI and Robotics
Bayesian optimization of CG topologies: Applications to common polymers
Data-Driven Accelerated Discovery of Novel Battery Materials
Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters
Exploring New Frontiers in Inverse Materials Design through Graph Neural Networks and Large Language Models
Inverse Design of Quantum Materials by High-Throughput Calculations and Optimization Techniques
Machine-Learning-Aided Discovery of Metal-Organic Frameworks for Water Harvesting
Machine Learning in Chemistry: Reactive Force Fields and Beyond
Machine Learning Materials Properties with Accurate Predictions, Uncertainty Estimates, Domain Guidance, and Persistent Online Accessibility
MAXIMA: A High-Throughput Instrument for XRD and XRF Characterization of Materials
Physics-Aware Recurrent Convolutional Neural Networks for Modeling Hotspot Formation and Growth in Energetic Materials
Physics-Informed Machine Learning of Thermodynamic Properties
Physics-Infused Causal and Hypothesis-Driven AI for Advanced Functional Materials
Reinforcement Learning for Materials Science: Algorithms, Challenges and Applications to Improve Understanding of System Dynamics
Role of Domain Knowledge Injection in Data-Driven Methods Towards Accelerating Material Discovery
The Space of Phase Diagrams: Visualization Strategies for Advanced Materials
Towards Automatic Alloy Design via Large Language Model Powered Multi-Agent Collaborations
Using UNET Architecture for Microstructural Image Analysis in Hypoeutectoid Steel
Variable Selection for Small-Scale Chemical Experimental Data Based on Bayesian Inference

Questions about ProgramMaster? Contact programming@programmaster.org