ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Advances in Materials and Systems for a Hydrogen Economy
Presentation Title Refractory Ceramic Interactions with Medium Temperature Hydrogen-Containing Atmospheres
Author(s) Matthew Lambert, Dana Goski, Scott Campbell, Dominic Loiacona
On-Site Speaker (Planned) Matthew Lambert
Abstract Scope The use of hydrogen in industrial applications, either as a combustion gas replacing fossil fuels or as a reactant gas, will affect the refractory ceramic linings used to contain these processes. Many studies have concentrated on the reaction of ceramics with high temperature gases (1200°C and above), but understanding the reactions at temperatures as low as 800°C is important for operations such as the direct reduction of iron. This work reviews and presents experimental data on the medium temperature reactions of refractory ceramic materials with hydrogen and hydrogen combined with other reactant gases, such as water, to better understand the limitations of traditional ceramic lining materials in these types of environments.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Adsorption and Dissociation of Hydrogen on Iron and Iron Oxide Surfaces Under Supercritical Conditions
Advanced Electrochemical Systems for Hydrogen Economy: Technology Status and Development Needs
Advances in Hydrogen Barrier Coatings – An Overview.
Analysis of Integrated Wind-Hydrogen Systems for Industrial Decarbonization
Application of Local Strain Theory for Predicting Notch Fatigue Testing in Hydrogen-Charged Austenitic Stainless Steel
Assessment of Hydrogen Embrittlement of Natural Gas Pipeline Steels
Compatibility of Existing Natural Gas Pipeline Materials with Hydrogen
Computational Simulation of Hydrogen DRI (HDRI) Pellets Immersed in Molten Steel and Slag
Degradation of Spinel Refractories in Dry (Ar - 10% H2) and Humid Hydrogen (Ar - 10% H2-3% H2O) Environment
Dynamic Nano and Microscale Processes in Hydrogen Charged Metals and Alloys
Effect of Additives on Hydrogen Equilibrium Pressure and Absorption Rates in Yttrium Hydride
Effect of Chemically Heterogeneous Microstructure on Hydrogen Embrittlement in Martensitic Steel
Effect of Cyclic Hydrogen Charging on Shot-Peening Steel with Surface Compressive Residual Stresses
Effects of Oxygen Impurities on Long-Term Gaseous Hydrogen Embrittlement of Structural Steels
Efficient Hydrogen Production from Recycled Aluminum and Seawater
Fatigue and Fracture of Structural Steels in Gaseous Hydrogen Environments
Ferritic Interconnect Materials in SOEC – Challenges and Degradation from Ambient Temperature to 900°C
Fundamental Atomistic Study of H-Defect Interactions to Predict H Segregation Energy Spectra
Hydrogen Embrittlement in Micro-Alloyed Ultra High Strength Press Hardening Steel (PHS)
Imaging the Nanoscale Hydrogen Distribution in an Austenitic Stainless Steel (347H) Using Atom Probe Tomography
Insights into Hydrogen Embrittlement of AA7075 Aluminum Alloy Fabricated by Additive Friction Stir Deposition
Insights into Hydrogen Separation from Simulations
Investigations in Hydrogen Ironmaking
Material Discovery and Design Principles of Perovskite Oxides for Reversible Solid Oxide Cells
Modeling and Experimental Studies of Hydrogen Effects on the Materials Used for Storage and Transport
Modeling and Valuation of Hydrogen Toward Multiple Energy Pathways and Grid Applications
Modulating the Laser-Induced Nickel Electrodes for Efficient Electrocatalytic Hydrogen Evolution Reaction (HER) – A Path Towards Green Hydrogen Economy
Multi-Layer, Multi-Functional Thermal and Environmental Barrier Coatings for Heat Engines
Multiscale Simulations of Materials Degradation for Hydrogen Production and Storage
Overview of U.S. DOE’s Reversible Solid Oxide Fuel Cell (R-SOFC) Program
Pipeline Safety for Transportation of Hydrogen Gas
Refractory Ceramic Interactions with Medium Temperature Hydrogen-Containing Atmospheres
The Less Discussed Impact of High Temperature (> 500 °C) Hydrogen Induced Degradation of Austenitic Ni- and Fe-Based Alloys
Understanding the Creep Properties of 347H Austenitic Stainless Steels under Hydrogen-Containing Environments
Unraveling the Influence of Hydrogen and Blended Gas on Polymer Performance in Infrastructure Systems
Zero-Electricity Electrolytic Reactor Produces Hydrogen and Syngas for Onsite Energy, Fuel, and Feedstocks

Questions about ProgramMaster? Contact programming@programmaster.org