ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Progressive Solutions to Improve the Corrosion Resistance of Nuclear Waste Storage Materials
Presentation Title Structural Origin of the Passivation Effect Nuclear Waste Immobilization Glasses
Author(s) Mathieu Bauchy
On-Site Speaker (Planned) Mathieu Bauchy
Abstract Scope When exposed to water, nuclear waste immobilization glasses form a hydrated gel surface layer concurrent with a decrease in their dissolution kinetics—a phenomenon known as the “passivation effect.” However, the atomic-scale origin of such passivation remains debated. Here, based on reactive molecular dynamics simulations, we investigate the hydration of a series of modified borosilicate glasses with varying compositions. We show that, upon the aging of the gel, the passivation effect manifests itself as a drop in hydrogen mobility. Nevertheless, only select glass compositions are found to exhibit some passivation. Based on these results, we demonstrate that the passivation effect cannot be solely explained by the repolymerization of the hydrated gel upon aging. Rather, we establish that the propensity for passivation is intrinsically governed by the reorganization of the medium-range order structure of the gel upon aging and, specifically, the formation of small silicate rings that hinder water mobility.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Neutron Diffraction Residual Stress Characterization of Stainless Steel Produced by Wire Arc Direct Energy Deposition
Polymer-Derived Ceramic Coatings for Nuclear Waste Storage Canister Corrosion Prevention
Quantitative Analysis of Hydrogen Interactions with UO2 Grain Boundaries Using Density Functional Theory
Structural Design of Borosilicate-Based Nuclear Waste Glasses
Structural Origin of the Passivation Effect Nuclear Waste Immobilization Glasses
Transition Metal Ions Induced Structural Rearrangements and Their Impact on Sulfur Solubility in Borosilicate-Based Model Nuclear Waste Glasses

Questions about ProgramMaster? Contact programming@programmaster.org