ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Structure-Property Relationships in Molecular Crystal Deformation
Presentation Title Using Terahertz Spectroscopy to Probe the Reactive Coordinates and the Mechanical Response of Crystalline Solids
Author(s) Michael T. Ruggiero
On-Site Speaker (Planned) Michael T. Ruggiero
Abstract Scope Over the past two decades, terahertz time-domain spectroscopy has become a key technique for characterizing solid samples due to its sensitivity to bulk molecular packing and ability to probe weak forces and long-range molecular dynamics. This makes it powerful for studying crystalline polymorphism and other condensed phase properties. Recent studies reveal terahertz vibrations are crucial for many physical phenomena, from thermomechanical properties to solid-state phase transformations. In this work, terahertz spectroscopy examines several solid-state materials, determining their elastic responses, deformation pathways, and polymorphic transitions. The technique is particularly valuable for exploring the intermolecular coordinate in condensed phase materials. Overall, this work emphasizes the significant role of low-frequency vibrational spectroscopy in understanding the properties of advanced organic materials.
Proceedings Inclusion? Planned:
Keywords Mechanical Properties, Powder Materials, Modeling and Simulation

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A shocking look into the large single crystal energetics and their analogues
Advances in mesoscale modelling of highly filled composite explosives
Crystal structure prediction of energetic materials using Genarris and GAtor
Dislocation mediated plasticity in PETN: indentation and high-rate deformation
Elucidating Tabletability of Pharmaceutical Solids based on Plasticity Quantified by Nanoindentation
From Atoms to Constituent Models for Energetic Molecular Crystals
high-fidelity simulations of shock to detonation transition
Impact of Nanoindentation Tip Geometry on Orientation-Dependent Nanomechanical Behavior of PETN
In-situ Mechanical Characterization of Molecular Crystal Materials
Interconnections between High Explosive Mechanical Strength and Reactivity in the Buildup to Detonation
Mechanical Properties in Pharmaceutical Solid Oral Dosage Form Development: Bridging Molecular Interactions and Performance
Mechanical response of single crystal acetaminophen over an extended strain rate
Molecular Crystals - A New Class in the Global Materials Space
Multi-Scale Model For Describing The Thermo-Mechanical Behavior Of Polycrystalline Energetic System Subjected To Dynamic Loadings
Multiscale Modeling of Material Strength for the Shock-to-Detonation Behavior in Heterogeneous PETN
Organic Molecular Crystals as Explosive Simulants in Polymer Composites
Physical Aspects of Plasticity and Constitutive Modeling of Molecular Crystal HMX
Plasticity and heat conversion of energetic materials under different dynamic loading conditions
Quantitative Analysis of Granular Explosives through Examination of the Compaction Manufacturing Process
The onset of plasticity in molecular crystals during contact loading
The ultimate strength of plastic bonded explosives under uniaxial stress compression at strain-rates beyond 1000 /s
Understanding milling behavior of pharmaceutical crystals through quasistatic and dynamic mechanical testing
Understanding the correlation between mechanical properties, crystal structure and tabletability of pharmaceutical cocrystals
Using Terahertz Spectroscopy to Probe the Reactive Coordinates and the Mechanical Response of Crystalline Solids

Questions about ProgramMaster? Contact programming@programmaster.org