ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T24: Materials Science & Technology
Symposium Computational Materials for Qualification and Certification
Presentation Title Quantification of Microstructure-Induced Uncertainty in Fatigue Nucleation in Polycrystalline Materials
Author(s) Caglar Oskay, Xiaoyu Zhang
On-Site Speaker (Planned) Caglar Oskay
Abstract Scope Prediction of fatigue initiation is a stochastic multiscale problem since initiation location and the number of cycles to initiation are strongly affected by both structural configuration and loading, as well as the material microstructure. We present a computational framework for uncertainty quantification and prediction of fatigue crack nucleation in polycrystalline materials. The framework relies on a reduced order model for “forward” modelling of a statistical volume element (SVE) subjected to fatigue. The reduced order model is efficient enough that we employ classical Monte Carlo techniques to sample the parameter space tp quantify uncertainty. The evolution and statistics of fatigue nucleation process in an SVE are tracked based on the fatigue indicator parameter (FIP) approach. A statistical time acceleration that predicts long time evolution of FIP statistics based on a first few hundred cycles is proposed. The uncertainty quantification framework was calibrated and validated with experiments on titanium alloy (Ti-6242S).

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Computational Multiscale Approach for Predicting Macroscale Elastic Properties and Failure Initiation in Phenolic Impregnated Carbon Ablator
A Framework for Assessing Simulation Maturity
Additive Manufacturing Porosity Estimation Using Multiple Nondestructive Evaluation Techniques
America Makes Efforts in Advanced Qualification Methods for AM
Assessing the Impact of Melt Pool Geometry Variability on Lack-of-Fusion Porosity and Fatigue Life in Powder Bed Fusion - Laser Beam Ti-6Al-4V
Computational Framework for Spatially-Dependent Melt Pool and Microstructure Simulations of Additively Manufactured Material
Computational Investigation on the Combined Effect of Pore Attributes on Strain Concentrators in Metal Additively Manufactured Materials
Computational Materials for Qualification and Certification Steering Group and Community Vision Roadmap
Computational Tools for Advancing Materials Maturity in Additive Manufacturing
Convolution-Based Numerical Solutions of Transient Temperature Fields during Powder Bed Fusion Additive Manufacturing: Theory, Accuracy, and Computational Cost
Correlations of Additive Manufacturing Model-Based Process Metrics With Spatter-Induced Porosity in the Powder Bed Fusion-Laser Beam/Metallic Process
Data-Driven Process Uncertainty Analysis of Stochastic Lack-of-Fusion in Laser Powder Bed Fusion
Development of Computational Materials Workflows for Additively Manufactured Metallic Materials to Enable Accelerated Prediction of Fatigue Performance
Durability and Damage Tolerance of Powder-Bed Fusion Ti-6Al-4V: Current Results and Modeling Needs
Efficient Sensitivity and Uncertainty Analysis of a Laser Powder Bed Fusion Thermal Model Built Using HYPAD-FEM
Enabling Rapid Aerospace Component Qualification and Certification: Integrated Model-Based Material Definitions in Additive Manufacturing
Fast, Cheap & In Control: Application of Surrogate Models to Explore Microstructure-Properties Relationships for AM-Based Materials
GO-MELT: GPU-Optimized Multilevel Execution of LPBF Thermal Simulations
Industry's Vision for the Use of Computational Materials Tools in Qualification and Certification
Lessons Learned Calibration and Validation of Process Models for Laser Powder Bed Fusion Additive Manufacturing
Machine Learning Enabled Parametrically Upscaled Constitutive Models for Fatigue Simulations: A Data-Driven Multiscale Modeling Approach
Materials Data for Validation and Verification of Mechanical Performance: Outcomes and Future Perspectives from the AM Benchmark Series
Physics-Based Modeling of Ti-6Al-4V Phase Transformations for PBF-LB Temperature Histories
Process Sensitivity of Laser Powder Bed Fusion of IN718 to Composition Variation
Quantification of Microstructure-Induced Uncertainty in Fatigue Nucleation in Polycrystalline Materials
Quantifying Microstructure Evolution of LPBF Ni-Alloy Under High Temperatures Exposure Through Computer Vision
QUASAR – Assessment of the State of the Art and Gaps for AM of Fracture Critical Components
Review of Past and Future Impacts of the Additive Manufacturing Benchmark Test Series (AM Bench)
Scientific AI for Automated Validation and Certification
Towards a Digital Twin for Qualification and Certification of Metals Additive Manufacturing
Towards a Probabilitic Model for the Assessment of Gas Turbine Components
Transitioning from Basic Research to Industrial Applications for Metal AM Components
Uncertainty Quantification and Sensitivity Analysis in Process-Structure-Property Simulations for Laser Powder Bed Fusion Additive Manufacturing
Uncertainty Quantification in Process-Structure-Property Dynamics of IN718
Using Unsupervised Learning to Cluster Fatigue Life Based on Ti64 Fatigue Fracture Surface Characteristics

Questions about ProgramMaster? Contact programming@programmaster.org