ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Environmentally Assisted Cracking: Theory and Practice
Presentation Title Prediction of Hydrogen Uptake Kinetics in Cathodically Polarized Metals
Author(s) Livia Cupertino Malheiros, Emilio Martinez-Paneda
On-Site Speaker (Planned) Livia Cupertino Malheiros
Abstract Scope This work employs a broad experimental approach to investigate the kinetics of hydrogen evolution reactions (HER) and hydrogen absorption, providing a first database of reaction rate input parameters for a developed model capable of resolving hydrogen uptake into cathodically polarized metals. Metal surface activities are investigated using potentiodynamic cathodic polarization and electrochemical impedance spectroscopy (EIS) in relatively mild electrolytes from pH 1 to 13. Fits of the polarization and EIS data provide quantitative information on the electrocatalytic activity of the metal surface and dominant HER mechanism (Volmer-Heyrovsky or Volmer-Tafel) used to obtain HER kinetic parameters, which are then linked to hydrogen absorption kinetics via analysis of electrochemical permeation transients. The full set of experimental reaction rate parameter values is incorporated into the model framework, demonstrating its potential to quantify hydrogen ingress as a function of environment, material, and defect geometry characteristics.
Proceedings Inclusion? Planned:

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Characterizing Stress-assisted Grain Boundary Diffusion of Zinc During Liquid Metal Embrittlement of AHSS
Consequences of Micro-alloying Elements and Microstructure on the Hydrogen Embrittlement Sensitivity of Carbon Steels
Corrosion Behavior of Hot-wire Laser DED Stainless Steel 316L Using Four Print Directions
Cracking of Additively Manufactured 316L SS in LWR-relevant Condition
Developing a Crystal-based Tribocorrosion Modeling Framework for Aluminum: An Integrated Experimental and Computational Study
Directionally Isolated Sensitization Responses in 5XXX Series Aluminum Alloy Plate Microstructures
Effect of Chloride Concentration on the Atmospheric Environment-assisted Cracking Behavior of Sensitized AA5083-H131
Effect of Crack-initiating Feature on the Environment-assisted Cracking Behavior of Sensitized AA5456-H116 in Marine Environments
Effect of Hydrogen on the Deformation Mechanism and Grain Boundary Decohesion of an Austenitic FeCrNi Alloy
Effect of Liquid Metal Exposure on Structural Alloy Ductility
Elucidation of Corrosion and Freeze/Thaw Mechanisms in Light Alloys by In situ X-ray Micro and Nanotomography
Enhanced Understanding of the Protocol for Characterizing Environment Assisted Cracking and Justification for a Modified Testing Standard
Evaluation of Environmentally Assisted Cracking on Wire Arc Additively Manufactured (WAAM) AISI 316LSi.
Exploring the Nature of Passivation Film in Chloride Salt Solution Under Tensile Loading in a Non-equiatomic Metastable High Entropy Alloy
Freeze-thaw Induced Damage Evolution in AA7075-T651
Fundamental Design of Alloys Resistant to H-embrittlement: Simulation Insights on Nanoscale H-defects Interactions
High-resolution Characterization of High-temperature Water Corrosion Under Compression vs Tension
Hydrogen and Nitrogen Contents Effects on Mechanical Behavior of Austenitic Stainless Steel
Hydrogen Content and Charpy Toughness of Pipeline Steels With Different Hydrogen Charging Processes
Hydrogen Embrittlement in Ni-Alloys
Hydrogen Embrittlement of Nickel-based Superalloys: Some Impacts of γ’-Ni3Al Precipitate States on Hardening Mechanisms and Damage Processes.
Impact of Helium Bubbles on Fracture Stress From Phase Field Simulations
Insights of Hydrogen Embrittlement for Austenitic Stainless Steels and Their Welds
Insights of Organic Compounds as Permeation Barriers for Hydrogen Embrittlement Prevention in Steel
Kim-Kim-Suzuki (KKS) Phase Field Model for Hydrogen-assisted Cracking
Long-term Performance of High-Cr, Nickel-based Alloys and Weldments in LWR Environment
Micromechanisms Behind Liquid Metal Embrittlement in Galvanized TWIP Steel
Microstructural Aspects of the Deterioration of Creep Life for Austenitic Steels in CO2 Environment
Multi-physics Phase Field Modelling of Corrosion and Hydrogen Embrittlement
Multiscale Modeling of Fatigue Crack Growth and Environmental Effects
Multiscale Study of the Impact of Hydrogen-grain Boundaries Interaction on Plasticity Mechanisms in Pure Nickel
On Hydride Nucleation and Growth in α+β Ti Alloys
Oxidation Mechanism Transitions in Tungsten Driven by Scale Cracking
Phase-field Model Incorporating Large Inelastic Strain With Application to the Oxidation of High-temperature Coating Systems
Phase File Modelling of Environmentally Assisted Cracking of Bioabsorbable Mg Alloys for Biomedical Applications
Physics-based Modeling of Corrosion Crack Dynamics and Fracture Using Meshless Peridynamics Framework
Plastic Deformation and Fracture Within the Defactant Concept
Precursor Damage Evolution and Stress Corrosion Crack Initiation of Ni-base Alloy 600 and Alloy 690 in PWR Primary Water
Prediction of Hydrogen Uptake Kinetics in Cathodically Polarized Metals
Probing the Mechanism Underlying the Interplay Between the Microscale Plastic Flow and the Atomic-scale H Diffusion Through Concurrent Atomistic-continuum Simulations
Recent Learning on Improving IASCC/SCC Resistance of Austenitic Stainless Steel in High Temperature Water
Recent Progress on Environmentally Assisted Cracking in Molten Salts: Fission Products and Other Nuisances
The Need for Understanding of the Differences Between Environment Assisted Fracture in Conventional Full Immersion Environments and Atmospheric Environments and how Newly Developed Crack Tip In-situ Techniques may Provide Insights
Towards Next Generation, Low Cost, Hydrogen Resilient Austenitic Steels: Relating Composition, Microstructure and Deformation Modes Across Length Scales
Using In Situ Crack Tip pH Measurements to Understand the Corrosion Fatigue Susceptibility in 2xxx (Al-Cu) and 7xxx (Al-Zn) Al Alloys

Questions about ProgramMaster? Contact programming@programmaster.org