About this Abstract |
Meeting |
2022 TMS Annual Meeting & Exhibition
|
Symposium
|
Functional Nanomaterials: Functional Low-Dimensional (0D, 1D, 2D) Materials 2022
|
Presentation Title |
Reticulated Structure of Sulfur/Nitrogen-doped Graphene Oxide for High Specific Energy Lithium/Sulfur cells |
Author(s) |
Yoon Hwa |
On-Site Speaker (Planned) |
Yoon Hwa |
Abstract Scope |
Graphene oxide (GO) has been regarded as an effective functional additive of the sulfur electrode because the sulfur-philic characteristic of GO can significantly suppress the lithium polysulfide (Li-PS) shuttle during cell operation. In this presentation, a sulfur-nitrogen doped GO (S–NrGO) nanocomposite electrode with a reticulated pore structure, referring to the interconnected ionic percolation channel will be introduced. Multifaceted approaches to develop the reticulated structure of the S–NrGO composites with the adequate surface area of NrGO by intentionally reducing the aggregation of all composite materials will be discussed. While improved lithium-ion percolation through the reticulated ionic channel of the S–NrGO composite promotes electrochemical reaction kinetics of the sulfur electrode, enhanced utilization of the highly sulfur-philic surface of NrGO effectively mitigate Li-PS shuttle, thereby leading to substantial improvement of electrochemical performance of Li/S cells with a high peak specific energy of 325 Wh/kg
(calculated). |
Proceedings Inclusion? |
Planned: |
Keywords |
Energy Conversion and Storage, Composites, Nanotechnology |