ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Steels in Extreme Environments
Presentation Title Accelerated Creep Deformation of Steels under Hydrogen Pressure at Elevated Temperature
Author(s) Du-Hyun Kim, Han-Jin Kim, Ehsan Norouzi, Jin-Yoo Suh, Seok Su Sohn
On-Site Speaker (Planned) Jin-Yoo Suh
Abstract Scope At elevated temperature in air, trapped hydrogen inside steel is released lowering the remaining hydrogen concentration in the metal. However, when a steel is exposed to hydrogen pressure at high temperature, hydrogen can be absorbed into the steel with higher concentration than the hydrogen absorbed at room temperature. To evaluate the effect of hydrogen on the deformation behavior of steels at high temperature, a simple equipment for evaluating creep deformation under hydrogen pressure was designed and demonstrated. Creep tests on different steels confirmed shorter creep rupture life at elevated temperature under hydrogen environment than in Ar atmosphere. Hydrogen assisted accelerated failure of a carbon steel was attributed to the dissolution of cementite generating methane bubbles which is well-known as high temperature hydrogen attack. However, other steels also showed accelerated creep failure by hydrogen without any carbide dissolution suggesting high temperature hydrogen embrittlement. Results on different steels will be presented.
Proceedings Inclusion? Planned:

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D characterization and cohesive zone model analysis on hydrogen-related intergranular fracture in martensitic steel
A study on the tensile behavior of fcc ferrous alloy accompanied by cryogenic serrations at 4.2 K
Accelerated Creep Deformation of Steels under Hydrogen Pressure at Elevated Temperature
Adsorption studies on corrosion inhibition performance of waste for pipeline steel in Oil and gas production
CHARACTERIZATION OF PRECIPITATION-STRENGTHENING HEAT-RESISTANT AUSTENITIC STAINLESS STEELS WITH MINOR ALLOYING ADDITIONS
CO2 Oxidation and Carburisation Evolution in Fe9Cr1Mo Steels for Advanced Gas-Cooled Reactors
Corrosion behaviour of ODS austenitic steels with Y2O3 addition
Corrosion inhibition of mild steel in hydrochloric acid solution using agricultural waste as a possible environmentally friendly corrosion inhibitor for oil and gas industry
Design of Fe-xNi-yMn Martensitic Steels for Cryogenic Liquefied Gas Applications
Developing an Atomistic Corrosion Model of Austenitic Steel Alloys from Ab-Initio Simulations of MnCr2O4 and Cr2O3
Doubling fatigue limit by eliminating crack embryo in 1.6 GPa-grade as-quenched martensitic steel
Effect of microalloying on the hydrogen embrittlement in press hardened steel
Electrochemical Control of Hydrogen: From Hydrogen Embrittlement to Hydrogen Storage
Hetero-interface engineering and its impact on mechanical behavior of advanced steels
High temperature oxidation of 304 SS at 630°C in combustion atmospheres
Hydrogen segregation to dislocations in austenitic stainless steels
Imaging the Nanoscale Hydrogen Distribution in a Creep Ruptured Austenitic Stainless Steel (347H) Using Atom Probe Tomography
Impact of hydrogen on the microstructure changes in steels: Ab initio based multiscale approaches
Implications of additively manufactured microstructures for hydrogen embrittlement resistance of steels
Influence of processing conditions and loading rate on the fracture toughness of 316L welds at cryogenic temperatures
Intense hydrogen-related acceleration of fatigue crack growth in high-strength steels: the mechanism and solution
Material Degradation of Engineering Alloys under High Temperature Ammonia Environment in Power Generation and Hydrogen Generation Processes
Mechanical Performance of Laser Powder Bed Fusion 316H Stainless Steel Following Low-Dose Neutron Irradiation
Mechanisms of Pore Collapse in Additively Manufactured 316L Stainless Steel Under High Strain Rates
Metallurgical Design to Enhance Strength and Hydrogen Embrittlement Resistance of Steels
Nanoindentation Study on Hydrogen Embrittlement in Martensite Microstructure of 2.0 GPa Hot Stamping Steel
Nanoscale analysis of hydrogen pick up in Fe-based alloys using cryogenic transfer atom probe tomography
Neutron Irradiation-Induced Performance Degradation of RAFM and ODS Steels
Novel Steel Composite Metal Foam in Extreme Environment of Heat and Load
Quantitative Investigation on Hydrogen Embrittlement Susceptibility of Typical Pipeline Steel Through Hydrogen Permeation and Slow Strain Rate Tensile Tests
Research on Failure of Offline Cooling Staves in 5500 m3 Blast Furnace
Resilience of PM-HIP Steels in Extreme Irradiation Environments
Segmentation of Microscopy Images of Lower Bainite and Tempered Martensite High Strength Steels
Steel's gassing problems and ways to solve them
Steel Corrosion in Supercritical CO2-Saturated Aqueous Environments
Steel Degradation in Green Technologies
Superior fatigue resistance of ultrafine bainitic steel by exploiting segregation-induced bands
Surface and Corrosion Characteristics of High-Alloyed Steel Tubes under Annealing Conditions
Susceptibility to hydrogen embrittlement of 22Mn all-weld metals: effect of temperature on deformation behavior.
Tensile deformation behavior and thermal conductivity of metallic alloys including stainless steels at deep cryogenic temperature as low as 4K
The Dynamic Behavior of Rebar Corrosion: Coupled Point Defect Theory, Machine Learning and Experimental Validation
Ultrafine-grained and nanocrystalline steels in extreme environments
Understanding the critical role of microstructure in enhanced resistance to H-assisted fatigue crack growth in ausformed and tempered martensitic steels
Understanding the Role of Microstructure on the Sub Critical Crack Growth Rate and Crack Path in Pipeline Ferritic Stainless Steels
Validation and Characterisation of Advanced Coating Solutions Applied to Tool Steels Used as Aluminum Extrusion Die: Creep and Life Time
In situ ion irradiation creep testing of austenitic and ferritic-martensitic steels

Questions about ProgramMaster? Contact programming@programmaster.org