ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments III
Presentation Title Automated In Situ Deformation Characterization via Analytical SEM during High Temperature Tensile Testing
Author(s) Sebastian Krauss, Hrishi Bale, Stephen Kelly
On-Site Speaker (Planned) Hrishi Bale
Abstract Scope Tensile testing is the backbone of mechanical characterization. The possibility to combine mechanical testing with advanced imaging and characterization methods at high temperatures up-to 800°C opens new possibilities for materials research in the nuclear and space applications. In this work in-situ annealing experiments are shown, where the grain growth is observed via EBSD and EDS. Different annealing states are achieved for a variety of model alloy samples. Using EBSD information, high Schmid factor grains were identified and monitored during the in-situ tensile experiment enabling the image acquisition from the early onset of yielding in the first few grains. Furthermore, in-situ tensile tests on steel samples at a temperature of 800 °C clearly reveal slip band formation using BSD contrast. Results demonstrate the automated workflow of in-situ SEM imaging incorporating feature tracking to enable precise region of interest imaging. Additionally combining digital image correlation approach to map strains during deformation.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advanced In-situ and Post-Irradiation-Examination Thermal Conductivity Measurements of Nuclear Fuels and Materials
Advanced Synchrotron Characterization of Fission and Fusion Energy Materials
Applications of Cryogenic Nanomechanical Testing
Automated In Situ Deformation Characterization via Analytical SEM during High Temperature Tensile Testing
Characterization of Simultaneous High-energy Proton and Spallation-Neutron Radiation Effects in Structural Alloys
Correlating Irradiation Defect Models to Thermal Conductivity Evolution under Irradiation in ThO2
Defect Structure and Property Evolution in Ion-irradiated Tungsten: Progress towards a Comprehensive Understanding
Deformation Twinning versus Slip in Ni-based Alloys, Containing Pt2Mo-structured, Ni2Cr-typed Precipitates
Detection of Radiation Vulnerability in Microelectronic Systems
Dose Rate Dependent Radiation Enhanced Diffusion in Model Oxides
Elucidating Helium Induced Softening in Nanograin Tungsten Through Electron Microscopy Informed Synchrotron X-Ray Scattering
Europium 3+ as a Structural Luminescent Probe in Calcined Ceria Pellets
High-temperature Stable Nanolamellar Transition Metal Carbides Derived from Two-dimensional MXenes for Extreme Environments
Hydrogen Dynamics in Yttrium Hydride Moderator Material
In-situ Thermal Diffusivity Recovery and Defect Annealing Kinetics in Self-ion Implanted Tungsten Using Transient Grating Spectroscopy
In Situ Irradiation of TiO2 Nanotubes
In Situ Monitoring of Heavy Liquid Metal and Molten Salt Corrosion under Irradiation with Proton-induced X-ray Emission (PIXE) Spectroscopy
Machine Learning Algorithms for High-throughput Characterization of Structure and Microstructure of Metals for Extreme Environments
Materials in Extreme Environments Investigated with Positron Spectroscopy
Microstructural Evolution of Alloy 718 under High Temperature In-situ Ion Irradiation with Machine Learning
Neutron Imaging at LANSCE: Characterizing Materials for the Next Generation of Nuclear Reactor Designs
Probing Short-Range Order in Disordered Crystalline Materials for Extreme Environments
Radiation Resistance of Metallic Glass Coatings of Crystalline Nanostructures
Recent Innovations in Machine Learning-based Techniques for In-situ Microscopy Data Analysis
Ring Pull Testing: The Effect of Mandrel Diameter
Thermomechanical Characterization of Advanced Reactor Materials in High Temperature Gas Environments
Three-dimensional Characterization of Multiple Phase Regions within a Neutron Irradiated U-Zr Fuel
Utilizing In-situ Microscopy Techniques to Decipher the Micro-scale Dynamics of Materials in Extreme Environments

Questions about ProgramMaster? Contact programming@programmaster.org