ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Characterization: Structural Descriptors, Data-Intensive Techniques, and Uncertainty Quantification
Presentation Title Basis Functions for Quantifying Grain Boundary Texture in Polycrystalline Microstructures
Author(s) Srikanth Patala, Jeremy K Mason
On-Site Speaker (Planned) Srikanth Patala
Abstract Scope The statistical distributions of different grain boundary types play an important role in governing the mechanical and functional properties of polycrystalline materials. However, even for simple microstructures, the capability of representing the distributions of GB character, as a function of the five macroscopic degrees of freedom, has not been established. As the GB character distributions directly influence the interfacial network connectivity, developing a framework for quantifying the statistics in the five-parameter space is a crucial missing step in the inverse-design of interface-dominated phenomena in polycrystalline systems. In this talk, I will present symmetrized functions, using the familiar hyperspherical harmonics, for representing grain boundary texture in the complete five-parameter space. The basis functions will also allow for the quantification of interfacial statistics in experimental microstructures and the interpolation of structure-property relationships of grain boundaries.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

100 Years of Scherrer Modifications: Demystifying Diffractogram Width Analyses for Nanocrystalline Materials
3D Morphological Characterization of Porous Cu by Vapor Phase Dealloying Zn-Cu Alloys
A New Crystallographic Defect Quantification Workflow via Advanced-microscopy-based Deep Learning
Advancement of Data Intensive Approaches in Materials Discovery and Design
Adversarial Networks for Microstructure Generation and Modeling Phase Transformation Kinetics
Application of Machine Learning to Microstructure Quantification and Understanding
Artificial Intelligence Approaches to Microstructural Science
Automated Anomaly Detection in Unlabeled Computed Tomography Images
Basis Functions for Quantifying Grain Boundary Texture in Polycrystalline Microstructures
Characterizing GB Atomic Structures at Multiple Scales
Characterizing the Energetics and Structural Configurations of Silicon Carbide Grain Boundaries Using High-throughput Atomistic Techniques
Deep Convolutional Networks for Image Reconstruction from 3D Coherent X-ray Diffraction Imaging Data
Determination of Representative Volume Elements for Small Cracks in Heterogeneous Domains via Convolutional Neural Networks
Feature Engineering of Material Structure for Extracting Process-structure-property Linkages
GB Property Localization: Inference and Uncertainty Quantification of Grain Boundary Structure-property Models
Higher Order Spectral Terms in Grain Boundary Networks
Indexing of Electron Back-Scatter Diffraction Patterns Using a Convolutional Neural Network
Integrated Structural Methods Addressing Aviation Challenges in Composites
Investigating the Atomistic Nature of Grain Boundary Failure
Investigating the Effect of Solute Segregation to Grain Boundaries in Nanocrystalline Alloys Toward Stability and Strengthening
Investigations of Microstructural Effects on Porosity Evolution
Large-scale Defect Contrast Simulations for Scanning and Transmission Electron Microscopy
Large Scale Microstructure Synthesis Using LEGOMAT: Application to Additive Manufacturing
Machine Learning and Electron Backscatter Diffraction
Machine Learning Approach for On-the-fly Crystal System Classification from Powder X-ray Diffraction Pattern
Machine Learning Approaches to Image Segmentation of Large Materials Science Datasets
Machine Learning Reinforced Crystal Plasticity Modeling of Titanium-Aluminum Alloys under Uncertainty
Methods for the Correction of Epistemic Resolution Error through Data Collection Process Simulations
Microstructural Evolution Along Geodesics
Monte Carlo Studies of EBSPs Spectroscopy
Neural Networks for Real-time Processing of Scanning Transmission Electron Microscopy Data
Parametric Models for Crystallographic Texture: Estimation and Uncertainty Quantification
Predicting Compressive Strength of Consolidated Solids from Features Extracted from SEM Images
Predicting Crack Location Using a Radial Distribution Function as a Unique Descriptor of Pore Networks
Predicting Microstructure-sensitive Fatigue-crack Path in 3D Using a Machine Learning Framework
The Grain Boundary Octonion: Metrics, Paths, and Fundamental Zones
Uncertainty Propagation in a Multiscale CALPHAD-reinforced Elastochemical Phase-field Model
Uncertainty Quantification of Far-field HEDM Measurements
Uncertainty Quantification Techniques Applied to Ductile Damage Predictions in the 3rd Sandia Fracture Challenge
Utilizing Convolutional Neural Networks for Prediction of Process and Material Parameters from Microstructural Images
X-Ray Computed Tomography of 3D Crack Lattices in Advanced Ceramics and their Effect on Mechanical Response

Questions about ProgramMaster? Contact programming@programmaster.org