ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Thermodynamics and Phase Diagrams Applied to Materials Design and Processing: An FMD/SMD Symposium Honoring Rainer Schmid-Fetzer
Presentation Title Essentiality of impurity (dilute) diffusion coefficients in establishing reliable diffusion and atomic mobility databases
Author(s) Ji-Cheng Zhao
On-Site Speaker (Planned) Ji-Cheng Zhao
Abstract Scope The Darkens’ equation and its multicomponent extension via the Andersson-Ågren formulism clearly show that the interdiffusion coefficients of solid solutions intercept the impurity diffusion coefficients (not self-diffusion coefficients) as the interdiffusion coefficients approach the pure elements in binary and multicomponent systems. Thus, impurity diffusion coefficients are essential in the establishment of reliable databases of diffusion coefficients and atomic mobilities. Examples in several binary systems will show the significance of impurity diffusion coefficients in judging the reliability of various datasets of interdiffusion coefficients. Interdiffusion coefficients that are not consistent with independently measured impurity diffusion coefficients (especially from tracer experiments) should be treated with suspicion. Thousands of impurity diffusion coefficients are not measured for metals. First-principles calculations of impurity (dilute) diffusion coefficients and machine-learning methods will be extremely valuable in providing computed data. Experimental measurements are also sought after. A call for action will be made for both computational and experimental studies.
Proceedings Inclusion? Planned:
Keywords Computational Materials Science & Engineering, Modeling and Simulation, ICME

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A generalized approach for rapid entropy calculation of liquids and solids
A thermodynamic evaluation of the U-Zr-N system
Application of the CALPHAD Method to Alloy Design and Processing Optimization
CALPHAD-assisted process optimization for free-cutting steels
CALPHAD Modeling of Electrons and Holes in Compound Semiconductors
Compositional screening of secondary aluminum alloys by combining CALPHAD and phase field simulations
Computational microstructural engineering for multi-phase HEAs
Designing lightweight alloys based on CALPHAD modeling and machine learning
Essentiality of impurity (dilute) diffusion coefficients in establishing reliable diffusion and atomic mobility databases
Evolution of the Calphad method and its application
High temperature thermodynamics for the development of low CO2 building materials
Hillert-style irreversible thermodynamics and the entropy production
Inputs from computational thermodynamics for grain size prediction and alloy design
Investigation Fe-Mg phase equilibria under High Temperature and High Pressure conditions
Kinetics of Solid State Transformations involving Intermetallic Phases
Microstructure design for precipitation-hardened aluminium and magnesium alloys
Miscibility gaps in multicomponent systems
On Gibbs Equilibrium and Hillert Nonequilibrium Thermodynamics and CALPHAD Modeling
On the development of the next generation of thermodynamic models of metallic solid solutions.
Phase Diagram and Barycentric Coordinate System
Phase Stability through Machine Learning
Predicting electrical resistivity and thermal conductivity of multicomponent multiphase alloys
Prediction of as cast microstructure by solidification model coupled with CALPHAD database: Conventional casting and Additive manufacturing process
The Application of Phase Diagram in Materials Science and Engineering
Thermodynamic Modeling of Hydrogen in the LiF-BeF2-BeO System for MSR Applications
Thermodynamic Modeling: Extreme Challenges, Emerging Opportunities
Thermodynamic models from ab initio insights
Thermodynamics and Phase Diagrams Applied to Materials Design and Processing
Utilizing Computational thermodynamics to design phase transformation, strength, and ductility of HEAs
Utilizing synchrotron radiation for phase identification in Mg alloys

Questions about ProgramMaster? Contact programming@programmaster.org