ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Materials Informatics to Accelerate Nuclear Materials Investigation
Presentation Title Modeling Cascade Damage in Tungsten Using Machine Learning SNAP Interatomic Potential: Electron-Phonon Interaction Model
Author(s) Omar Marwan Hussein, Fadi Abdeljawad, Timofey Frolov, Artur Tamm
On-Site Speaker (Planned) Omar Marwan Hussein
Abstract Scope Tungsten (W) is extensively studied for its potential as plasma-facing material in fusion devices due to its high melting point, excellent thermal conductivity, and low sputtering erosion. Many experiments investigated the radiation effects on W, revealing that the evolution in defect structures and microstructural transformations induce embrittlement and reduce the material's thermal conductivity. Hence, it is crucial to accurately account for the energy dissipation from atomic interactions with the electronic system, as the damage morphology significantly influences how materials respond to radiation. Herein, we use a machine learning SNAP interatomic potential to explore high-energy radiation damage processes on W, incorporating realistic electronic stopping power and electron-phonon coupling. In broad terms, our present work provides a framework to understand the primary stages of radiation effects by investigating the electron-phonon coupling effects in microstructure and damage accumulation.
Proceedings Inclusion? Planned:
Keywords Nuclear Materials, Modeling and Simulation, Machine Learning

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerating Characterization of Radiation Driven Processes using Machine Learning Tools
Characterizing Microstructures in Aluminide Coatings Captured in SEM Image with Convolutional Neural Networks
Deep Neural Network for Porosity and Microstructure Analytics of a High Burnup U-10Zr Metallic Solid Fuel
Defect Evolution in Multi-principal Chemically Disordered Alloys from Multiscale Simulations
E-25: Feature Engineering for Construction of High-accuracy Thermal Conductivity Prediction Model for Uranium Compounds
E-26: Materials Genomics Search for Possible Helium-absorbing Nano-phases in Fusion Structural Materials and Experimental Validation
Emergent Molecular Structure and Dynamics of Tetrahedral Liquids Revealed by Neural Network Forcefield Simulations and Neutron Spin Echo Experiments
Few-shot Machine Learning for Automated Analysis of TEM Images of Nuclear Materials
Influence of Empirical Potentials on Data Quality in Computational Studies of Zr Alloys
Inverse Uncertainty Quantification of Dispersion Analysis Research Tool (DART) Parameters Necessary for the Calculation of Fission Gas Swelling in U-Mo Fuel
Machine Learning Enhanced Kinetic Monte Carlo Modeling of Molten Salt Corrosion of Ni-Cr Alloys
Machine Learning for Predicting Reactor Pressure Vessel Embrittlement
Materials Genomics Search for Helium-absorbing Nano-phases in Fusion Structural Materials
Modeling Cascade Damage in Tungsten Using Machine Learning SNAP Interatomic Potential: Electron-Phonon Interaction Model
Neural Networks of Defect Kinetics in Refractory Alloys
Optimizing Thermal Conductivity Prediction of Uranium Compounds using Balanced Multiclass Classification
Probing Radiation Induced Interface Metastability Using Deep Learning Object Detection
Putting Artificial Intelligence into Action to Quantify Radiation Effects in Materials
Quantitative Insight to Fission Gas Bubble Distribution and Lanthanide Movement in Irradiated Annular U-10Zr Metallic Fuel Using Deep Learning
Revealing the Story of Defects from Coupled Extreme Environments with Autoencoders and Dense Neural Networks
Scaling Ductility from Microscale to Bulk by Coupling Crystal Plasticity Simulations with 3D Convolutional Neural Networks
Scanning-TEM (STEM) 3D Tomography for Quantification of Radiation Damage in Neutron Irradiated 316L Stainless Steel
Synthetic Data Driven Materials Informatics Methods for Nuclear Materials Characterization
Utilizing Mechanistic Modeling and Uncertainty Analysis to Support Nuclear Fuel Qualification

Questions about ProgramMaster? Contact programming@programmaster.org