ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Electrometallurgy 2020
Presentation Title A Key Role for Electrometallurgy in Climate Change Mitigation
Author(s) Adam C. Powell
On-Site Speaker (Planned) Adam C. Powell
Abstract Scope New technologies for climate change mitigation will require rapid and significant production scale-up for materials such as solar silicon, light metals for transportation, and rare earths for electric vehicle motors and wind turbine generators, as well as new processes for emissions-free ironmaking. In this context, electrometallurgy can potentially provide new process technologies which can scale quickly to meet global clean energy and efficiency needs. This talk will discuss several such candidate electrometallurgy technologies and their common features. For example, molten salt electrolysis with SOM anodes can directly reduce natural quartzite to solar silicon with no direct greenhouse emissions. Flow Electrolysis is a new method for direct oxide-to-metal powder reduction in aqueous solution with no direct greenhouse emissions. And there are other electrometallurgy technologies with potential for significant net-negative greenhouse emissions.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A 3-D Numerical Model to Predict Low Temperature Aluminum Electrochemical Process Using Ionic Liquids as Electrolytes at Different Boundary Conditions
A Key Role for Electrometallurgy in Climate Change Mitigation
Capital Cost Estimation for Electrochemical Processes
Development of a Magnesium Metal Production Process Using North Korean Magnesite
Development of a Novel Magnesium Metal Production Process by Electrolysis of Magnesium Oxide Using a Tin Metal Cathode
Effective Copper Diffusion Coefficients in CuSO4 – H2SO4 Electrowinning Electrolytes
Electrolytic Extraction of Liquid Copper and Iron from Chalcopyrite Ore
Enhanced Aluminum Electrorefining Process from Aluminum Alloy Scraps via Surface Engineering
Future Prospects for Copper Leaching, Solvent Extraction and Electrowinning Technology
M-56 (Digital): Electron Beam Refinery and Purification in Newly Constructed Production Units with Gas Discharged Electron Beam Guns
M-58: Electrochemical Behavior of Fe2O3 in Electro-deoxygenation in NaCl-CaCl2 Molten Salt System
M-59: Reduction Mechanism of Metal Cobalt from Cathode Material of Waste Lithium Cobalt Oxide Battery
Modeling Nickel and Zinc Electrowinning Based on Ion Mass Transport and Electrode Reaction Kinetics
Study on High-temperature Liquid Lithium Battery with LiI-KI Electrolyte
The Electrochemical Conversion of Chalcopyrite to Less Refractory Mineral Phases for Hydrometallurgical Processing
Theories of Electrodeposition, Beings-of-reason, and Reality

Questions about ProgramMaster? Contact programming@programmaster.org