About this Abstract |
| Meeting |
2021 TMS Annual Meeting & Exhibition
|
| Symposium
|
Hume-Rothery Symposium: Accelerated Measurements and Predictions of Thermodynamics and Kinetics for Materials Design and Discovery
|
| Presentation Title |
Integration of Computational Tools and Advanced Characterization Methods to Understand Phase Transformations in Additively Manufactured Steels |
| Author(s) |
Greta Lindwall, Niklas Holländer Pettersson, Chia-Ying Chou, Durga Ananthanarayanan, Benjamin Neding, Peter Hedström, Fan Zhang |
| On-Site Speaker (Planned) |
Greta Lindwall |
| Abstract Scope |
Additive manufacturing (AM) enables complex tool geometries with improved tool performance as a result. This has, in particular, increased the interest in developing printable medium-carbon steels aimed for hot-work tooling application where the incorporation of conformal cooling channels in the tool design may prolong the tool life considerably. In this work, the as-built microstructures of hot-work tool steels manufactured using laser-powder bed fusion are studied in detail as well as the response to post-print heat treatments. Emphasis is on how Calphad-based computational thermodynamics and kinetics can be applied for materials design and development of suitable post-heat treatments. Experimental characterization methods including ex-situ and in-situ synchrotron-based diffraction are employed for model calibration. Protocols for quantifications of retained austenite fractions in AM tool steels accounting for texture and spatial variations are discussed. |
| Proceedings Inclusion? |
Planned: |
| Keywords |
Additive Manufacturing, Computational Materials Science & Engineering, Characterization |