ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium Accelerated Discovery and Insertion of Next Generation Structural Materials
Presentation Title A Design Space for Tunable Ceramic-polymer Composites
Author(s) Yan Li
On-Site Speaker (Planned) Yan Li
Abstract Scope The route of devising polymer-derived ceramics (PDCs), which relies on heat treatment to convert preceramic polymers to ceramics, presents a flexible and energy-efficient approach to fabricate a broad spectrum of ceramics and in-situ ceramic-polymer composites with binary or multinary phases. Understanding the relationship among processing parameters, phase composition and material response holds an important key for property tailoring of PDC composites in different engineering applications. An integrated computational materials engineering (ICME) approach is developed to fundamentally understand how phase transition and microstructure design combine to affect the key mechanical properties of polymer derived ceramic composites. A few case studies will be provided to illustrate how to tailor the mechanical response by redistributing the energy dissipation in a controllable path.
Proceedings Inclusion? Planned:
Keywords Computational Materials Science & Engineering, ICME, Composites

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Design Space for Tunable Ceramic-polymer Composites
A Diffusion Couple Approach to β-Ti Alloy Development: Evaluating the Oxidation Performance of Ti-Fe-X+ Alloys
A High-throughput Setup for Materials Exposure to Simultaneous Irradiation-corrosion Conditions
Accelerated Discovery of Novel Titanium Alloys using High-throughput Manufacturing, Characterization and Testing
Accelerating Multimodal Data Collection: A Workflow for Metallic Films
AI and Machine Learning Tools for Development and Analysis of Image Driven 2D Materials
Combinatorial Mechanical Microscopy via Correlated Nanoindentation and EDX Mapping
Computational Design of an Ultra-strong High-entropy Alloy
Computational Design of High Entropy Alloy Hardmetals
Design of a Compact Morphology Cobalt-based Superalloy for Additive Manufacturing
Efficient Conductivity and Hardness Optimization in Cu-Ag-Ni Alloys using Bayesian Active Learning
High-throughput Electric-Field-assisted Sintering and Characterization Techniques for Materials Discovery
High-throughput Prediction of Fracture and Brittle to Ductile Transition in Tungsten using Variable Temperature Nanoindentation
High-throughput Synthesis and Mechanical Characterization of Sputtered Metallic Alloys
How Should You Select an Algorithm for a Materials Discovery Campaign with Multiple Objectives, Complex and High-dimensional Structure-processing-property Relationships, and a Small Adaptive Design Budget?
Machine Learning-assisted Discovery of Novel High Temperature Ni-rich NiTiHfZr Multi-component Shape Memory Alloys
Rapid Characterisation of Active Slip Systems in Titanium Ordered-bcc Compounds using an Algorithm for Automated Indentation Slip Trace Analysis.
Using Machine Intuitive Learning to Predict Advanced Steel Properties

Questions about ProgramMaster? Contact programming@programmaster.org